Xiaoguang Li , Yichao Zhou , Hongxia Yin , Pengfei Zhao , Ruowei Tang , Han Lv , Yating Qin , Li Zhuo , Zhenchang Wang
{"title":"Sub-features orthogonal decoupling: Detecting bone wall absence via a small number of abnormal examples for temporal CT images","authors":"Xiaoguang Li , Yichao Zhou , Hongxia Yin , Pengfei Zhao , Ruowei Tang , Han Lv , Yating Qin , Li Zhuo , Zhenchang Wang","doi":"10.1016/j.compmedimag.2024.102380","DOIUrl":null,"url":null,"abstract":"<div><p>The absence of bone wall located in the jugular bulb and sigmoid sinus of the temporal bone is one of the important reasons for pulsatile tinnitus. Automatic and accurate detection of these abnormal singes in CT slices has important theoretical significance and clinical value. Due to the shortage of abnormal samples, imbalanced samples, small inter-class differences, and low interpretability, existing deep-learning methods are greatly challenged. In this paper, we proposed a sub-features orthogonal decoupling model, which can effectively disentangle the representation features into class-specific sub-features and class-independent sub-features in a latent space. The former contains the discriminative information, while, the latter preserves information for image reconstruction. In addition, the proposed method can generate image samples using category conversion by combining the different class-specific sub-features and the class-independent sub-features, achieving corresponding mapping between deep features and images of specific classes. The proposed model improves the interpretability of the deep model and provides image synthesis methods for downstream tasks. The effectiveness of the method was verified in the detection of bone wall absence in the temporal bone jugular bulb and sigmoid sinus.</p></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"115 ","pages":"Article 102380"},"PeriodicalIF":5.4000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124000570","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The absence of bone wall located in the jugular bulb and sigmoid sinus of the temporal bone is one of the important reasons for pulsatile tinnitus. Automatic and accurate detection of these abnormal singes in CT slices has important theoretical significance and clinical value. Due to the shortage of abnormal samples, imbalanced samples, small inter-class differences, and low interpretability, existing deep-learning methods are greatly challenged. In this paper, we proposed a sub-features orthogonal decoupling model, which can effectively disentangle the representation features into class-specific sub-features and class-independent sub-features in a latent space. The former contains the discriminative information, while, the latter preserves information for image reconstruction. In addition, the proposed method can generate image samples using category conversion by combining the different class-specific sub-features and the class-independent sub-features, achieving corresponding mapping between deep features and images of specific classes. The proposed model improves the interpretability of the deep model and provides image synthesis methods for downstream tasks. The effectiveness of the method was verified in the detection of bone wall absence in the temporal bone jugular bulb and sigmoid sinus.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.