Deep Learning–Based Prediction Modeling of Major Adverse Cardiovascular Events After Liver Transplantation

Ahmed Abdelhameed PhD , Harpreet Bhangu MD , Jingna Feng MS , Fang Li PhD , Xinyue Hu MS , Parag Patel MD , Liu Yang MD , Cui Tao
{"title":"Deep Learning–Based Prediction Modeling of Major Adverse Cardiovascular Events After Liver Transplantation","authors":"Ahmed Abdelhameed PhD ,&nbsp;Harpreet Bhangu MD ,&nbsp;Jingna Feng MS ,&nbsp;Fang Li PhD ,&nbsp;Xinyue Hu MS ,&nbsp;Parag Patel MD ,&nbsp;Liu Yang MD ,&nbsp;Cui Tao","doi":"10.1016/j.mcpdig.2024.03.005","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>To validate deep learning models’ ability to predict post-transplantation major adverse cardiovascular events (MACE) in patients undergoing liver transplantation (LT).</p></div><div><h3>Patients and Methods</h3><p>We used data from Optum’s de-identified Clinformatics Data Mart Database to identify liver transplant recipients between January 2007 and March 2020. To predict post-transplantation MACE risk, we considered patients’ demographics characteristics, diagnoses, medications, and procedural data recorded back to 3 years before the LT procedure date (index date). MACE is predicted using the bidirectional gated recurrent units (BiGRU) deep learning model in different prediction interval lengths up to 5 years after the index date. In total, 18,304 liver transplant recipients (mean age, 57.4 years [SD, 12.76]; 7158 [39.1%] women) were used to develop and test the deep learning model’s performance against other baseline machine learning models. Models were optimized using 5-fold cross-validation on 80% of the cohort, and model performance was evaluated on the remaining 20% using the area under the receiver operating characteristic curve (AUC-ROC) and the area under the precision-recall curve (AUC-PR).</p></div><div><h3>Results</h3><p>Using different prediction intervals after the index date, the top-performing model was the deep learning model, BiGRU, and achieved an AUC-ROC of 0.841 (95% CI, 0.822-0.862) and AUC-PR of 0.578 (95% CI, 0.537-0.621) for a 30-day prediction interval after LT.</p></div><div><h3>Conclusion</h3><p>Using longitudinal claims data, deep learning models can efficiently predict MACE after LT, assisting clinicians in identifying high-risk candidates for further risk stratification or other management strategies to improve transplant outcomes based on important features identified by the model.</p></div>","PeriodicalId":74127,"journal":{"name":"Mayo Clinic Proceedings. Digital health","volume":"2 2","pages":"Pages 221-230"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949761224000221/pdfft?md5=93eb32520224a4e9423e1f9cc6e1d49b&pid=1-s2.0-S2949761224000221-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mayo Clinic Proceedings. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949761224000221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

To validate deep learning models’ ability to predict post-transplantation major adverse cardiovascular events (MACE) in patients undergoing liver transplantation (LT).

Patients and Methods

We used data from Optum’s de-identified Clinformatics Data Mart Database to identify liver transplant recipients between January 2007 and March 2020. To predict post-transplantation MACE risk, we considered patients’ demographics characteristics, diagnoses, medications, and procedural data recorded back to 3 years before the LT procedure date (index date). MACE is predicted using the bidirectional gated recurrent units (BiGRU) deep learning model in different prediction interval lengths up to 5 years after the index date. In total, 18,304 liver transplant recipients (mean age, 57.4 years [SD, 12.76]; 7158 [39.1%] women) were used to develop and test the deep learning model’s performance against other baseline machine learning models. Models were optimized using 5-fold cross-validation on 80% of the cohort, and model performance was evaluated on the remaining 20% using the area under the receiver operating characteristic curve (AUC-ROC) and the area under the precision-recall curve (AUC-PR).

Results

Using different prediction intervals after the index date, the top-performing model was the deep learning model, BiGRU, and achieved an AUC-ROC of 0.841 (95% CI, 0.822-0.862) and AUC-PR of 0.578 (95% CI, 0.537-0.621) for a 30-day prediction interval after LT.

Conclusion

Using longitudinal claims data, deep learning models can efficiently predict MACE after LT, assisting clinicians in identifying high-risk candidates for further risk stratification or other management strategies to improve transplant outcomes based on important features identified by the model.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的肝移植后主要不良心血管事件预测模型
目标验证深度学习模型预测接受肝移植(LT)患者移植后主要不良心血管事件(MACE)的能力。患者和方法我们使用 Optum 的去标识化临床信息学数据集市数据库中的数据来识别 2007 年 1 月至 2020 年 3 月期间的肝移植受者。为了预测移植后 MACE 风险,我们考虑了患者的人口统计学特征、诊断、用药以及 LT 手术日期(索引日期)前 3 年的手术数据。我们使用双向门控递归单元(BiGRU)深度学习模型,按照不同的预测间隔长度对MACE进行预测,最长预测间隔时间为指数日期后5年。共有 18304 名肝移植受者(平均年龄 57.4 岁 [SD, 12.76];女性 7158 [39.1%])被用于开发深度学习模型,并与其他基线机器学习模型对比测试其性能。在 80% 的队列中使用 5 倍交叉验证对模型进行了优化,并在剩余 20% 的队列中使用接收器操作特征曲线下面积(AUC-ROC)和精确度-召回曲线下面积(AUC-PR)对模型性能进行了评估。841(95% CI,0.822-0.862),LT 后 30 天预测间隔的 AUC-PR 为 0.578(95% CI,0.537-0.621)。结论利用纵向索赔数据,深度学习模型可以有效预测 LT 后的 MACE,协助临床医生根据模型识别的重要特征识别高风险候选者,以进一步进行风险分层或采取其他管理策略,从而改善移植预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mayo Clinic Proceedings. Digital health
Mayo Clinic Proceedings. Digital health Medicine and Dentistry (General), Health Informatics, Public Health and Health Policy
自引率
0.00%
发文量
0
审稿时长
47 days
期刊最新文献
Developing a Research Center for Artificial Intelligence in Medicine Strategic Considerations for Selecting Artificial Intelligence Solutions for Institutional Integration: A Single-Center Experience Reviewers for Mayo Clinic Proceedings: Digital Health (2024) A Blueprint for Clinical-Driven Medical Device Development: The Feverkidstool Application to Identify Children With Serious Bacterial Infection Cost-Effectiveness of Artificial Intelligence-Enabled Electrocardiograms for Early Detection of Low Ejection Fraction: A Secondary Analysis of the Electrocardiogram Artificial Intelligence-Guided Screening for Low Ejection Fraction Trial
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1