A lower bound for the complex flow number of a graph: A geometric approach

IF 0.9 3区 数学 Q2 MATHEMATICS Journal of Graph Theory Pub Date : 2024-02-04 DOI:10.1002/jgt.23075
Davide Mattiolo, Giuseppe Mazzuoccolo, Jozef Rajník, Gloria Tabarelli
{"title":"A lower bound for the complex flow number of a graph: A geometric approach","authors":"Davide Mattiolo,&nbsp;Giuseppe Mazzuoccolo,&nbsp;Jozef Rajník,&nbsp;Gloria Tabarelli","doi":"10.1002/jgt.23075","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n <mo>≥</mo>\n <mn>2</mn>\n </mrow>\n <annotation> $r\\ge 2$</annotation>\n </semantics></math> be a real number. A complex nowhere-zero <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math>-flow on a graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is an orientation of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> together with an assignment <span></span><math>\n <semantics>\n <mrow>\n <mi>φ</mi>\n <mo>:</mo>\n <mi>E</mi>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <mo>→</mo>\n <mi>C</mi>\n </mrow>\n <annotation> $\\varphi :E(G)\\to {\\mathbb{C}}$</annotation>\n </semantics></math> such that, for all <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n <mo>∈</mo>\n <mi>E</mi>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $e\\in E(G)$</annotation>\n </semantics></math>, the Euclidean norm of the complex number <span></span><math>\n <semantics>\n <mrow>\n <mi>φ</mi>\n <mrow>\n <mo>(</mo>\n <mi>e</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\varphi (e)$</annotation>\n </semantics></math> lies in the interval <span></span><math>\n <semantics>\n <mrow>\n <mo>[</mo>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>r</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <mo>]</mo>\n </mrow>\n <annotation> $[1,r-1]$</annotation>\n </semantics></math> and, for every vertex, the incoming flow is equal to the outgoing flow. The complex flow number of a bridgeless graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, denoted by <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ϕ</mi>\n <mi>C</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\phi }_{{\\mathbb{C}}}(G)$</annotation>\n </semantics></math>, is the minimum of the real numbers <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> admits a complex nowhere-zero <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math>-flow. The exact computation of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ϕ</mi>\n <mi>C</mi>\n </msub>\n </mrow>\n <annotation> ${\\phi }_{{\\mathbb{C}}}$</annotation>\n </semantics></math> seems to be a hard task even for very small and symmetric graphs. In particular, the exact value of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ϕ</mi>\n <mi>C</mi>\n </msub>\n </mrow>\n <annotation> ${\\phi }_{{\\mathbb{C}}}$</annotation>\n </semantics></math> is known only for families of graphs where a lower bound can be trivially proved. Here, we use geometric and combinatorial arguments to give a nontrivial lower bound for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ϕ</mi>\n <mi>C</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\phi }_{{\\mathbb{C}}}(G)$</annotation>\n </semantics></math> in terms of the odd-girth of a cubic graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> (i.e., the length of a shortest odd cycle) and we show that this lower bound is tight. This result relies on the exact computation of the complex flow number of the wheel graph <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>W</mi>\n <mi>n</mi>\n </msub>\n </mrow>\n <annotation> ${W}_{n}$</annotation>\n </semantics></math>. In particular, we show that for every odd <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>, the value of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ϕ</mi>\n <mi>C</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>W</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\phi }_{{\\mathbb{C}}}({W}_{n})$</annotation>\n </semantics></math> arises from one of three suitable configurations of points in the complex plane according to the congruence of <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> modulo 6.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"106 2","pages":"239-256"},"PeriodicalIF":0.9000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23075","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let r 2 $r\ge 2$ be a real number. A complex nowhere-zero r $r$ -flow on a graph G $G$ is an orientation of G $G$ together with an assignment φ : E ( G ) C $\varphi :E(G)\to {\mathbb{C}}$ such that, for all e E ( G ) $e\in E(G)$ , the Euclidean norm of the complex number φ ( e ) $\varphi (e)$ lies in the interval [ 1 , r 1 ] $[1,r-1]$ and, for every vertex, the incoming flow is equal to the outgoing flow. The complex flow number of a bridgeless graph G $G$ , denoted by ϕ C ( G ) ${\phi }_{{\mathbb{C}}}(G)$ , is the minimum of the real numbers r $r$ such that G $G$ admits a complex nowhere-zero r $r$ -flow. The exact computation of ϕ C ${\phi }_{{\mathbb{C}}}$ seems to be a hard task even for very small and symmetric graphs. In particular, the exact value of ϕ C ${\phi }_{{\mathbb{C}}}$ is known only for families of graphs where a lower bound can be trivially proved. Here, we use geometric and combinatorial arguments to give a nontrivial lower bound for ϕ C ( G ) ${\phi }_{{\mathbb{C}}}(G)$ in terms of the odd-girth of a cubic graph G $G$ (i.e., the length of a shortest odd cycle) and we show that this lower bound is tight. This result relies on the exact computation of the complex flow number of the wheel graph W n ${W}_{n}$ . In particular, we show that for every odd n $n$ , the value of ϕ C ( W n ) ${\phi }_{{\mathbb{C}}}({W}_{n})$ arises from one of three suitable configurations of points in the complex plane according to the congruence of n $n$ modulo 6.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图的复流数下限:几何方法
设 r ≥ 2 $r\ge 2$ 为实数。图 G $G$ 上的复数无处-零 r $r$ -流是 G $G$ 的一个取向以及一个赋值 φ : E ( G ) → C $\varphi :E(G)\to {\mathbb{C}}$ ,这样,对于所有 e∈ E ( G ) $e\in E(G)$ ,复数 φ ( e ) $\varphi (e)$ 的欧氏规范位于区间 [ 1 , r - 1 ]。 $[1,r-1]$ 并且,对于每个顶点,流入流量等于流出流量。无桥图 G $G$ 的复流数用 ϕ C ( G ) ${\phi }_{{\mathbb{C}}}(G)$ 表示,是实数 r $r$ 中的最小值,使得 G $G$ 可以容纳无处为零的复 r $r$ 流。即使对于非常小的对称图,精确计算 ϕ C ${\phi }_{\mathbb{C}}$ 似乎也是一项艰巨的任务。特别是,j C ${\phi }_{\mathbb{C}}$的精确值只有在可以微不足道地证明下界的图族中才是已知的。在这里,我们利用几何和组合论证,以立方图 G $G$ 的奇数周长(即最短奇数周期的长度)为单位,给出了 ϕ C ( G ) ${\phi }_{\mathbb{C}}(G)$ 的非微不足道的下界,并证明这个下界是严密的。这一结果依赖于车轮图 W n ${W}_{n}$ 复流数的精确计算。特别是,我们证明了对于每一个奇数 n $n$ ,ϕ C ( W n ) ${\phi }_{{\mathbb{C}}}({W}_{n})$ 的值产生于复数平面中根据 n $n$ modulo 6 的同余式的三个合适配置点之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
期刊最新文献
Issue Information Issue Information Issue Information Counting circuit double covers Non-Hamiltonian Cartesian products of two even dicycles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1