Redox imbalance accompanies loss of viability in seeds of two cacti species buried in situ

IF 2.1 3区 生物学 Q2 PLANT SCIENCES Seed Science Research Pub Date : 2024-04-15 DOI:10.1017/s0960258524000011
David A. Guzmán-Hernández, Claudia Barbosa-Martínez, Juan M. Villa-Hernández, Laura J. Pérez-Flores
{"title":"Redox imbalance accompanies loss of viability in seeds of two cacti species buried in situ","authors":"David A. Guzmán-Hernández, Claudia Barbosa-Martínez, Juan M. Villa-Hernández, Laura J. Pérez-Flores","doi":"10.1017/s0960258524000011","DOIUrl":null,"url":null,"abstract":"<p>This work provides insights into the deterioration of cacti seeds of <span>Escontria chiotilla</span> (F.A.C. Weber ex K. Schum) and <span>Stenocereus pruinosus</span> (Otto ex Pfeiff.) Buxbaum stored <span>ex situ</span> at 25 °C, under dry and dark conditions or buried <span>in situ</span> conditions in a xerophytic shrubland. Viability, germination speed, electrolyte leakage and indicators of the redox balance including glutathione content, glutathione half-cell reduction potential (E<span>GSSG/2GSH</span>) and malondialdehyde (MDA), oxidized protein content, together with water-soluble antioxidant enzyme activity were assessed. Over a period of two years of storage, viability was maintained when seeds were stored <span>ex situ</span> at 7–9% water content compared to seeds buried in the soil. A second burial experiment showed that seeds of <span>E. chiotilla</span> maintained viability during a year of storage that included a rainy season followed by a dry season. Thereafter, they died rapidly during the second rainy season. In contrast, those of <span>S. pruinosus</span> started to lose viability after 6 months of burial at the end of the rainy season and were mostly dead at the end of the dry season. This difference in persistence between species was related to a difference in the glutathione content and antioxidant enzyme activities. In both storage experiments, the loss of viability of both species was associated to a E<span>GSSG/2GSH</span> shift to a more oxidative state during burial. Yet, contents in MDA and oxidized soluble proteins were not related to redox imbalance and loss of viability, indicating that these compounds are not good markers of oxidative stress in cacti seeds during storage.</p>","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seed Science Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/s0960258524000011","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This work provides insights into the deterioration of cacti seeds of Escontria chiotilla (F.A.C. Weber ex K. Schum) and Stenocereus pruinosus (Otto ex Pfeiff.) Buxbaum stored ex situ at 25 °C, under dry and dark conditions or buried in situ conditions in a xerophytic shrubland. Viability, germination speed, electrolyte leakage and indicators of the redox balance including glutathione content, glutathione half-cell reduction potential (EGSSG/2GSH) and malondialdehyde (MDA), oxidized protein content, together with water-soluble antioxidant enzyme activity were assessed. Over a period of two years of storage, viability was maintained when seeds were stored ex situ at 7–9% water content compared to seeds buried in the soil. A second burial experiment showed that seeds of E. chiotilla maintained viability during a year of storage that included a rainy season followed by a dry season. Thereafter, they died rapidly during the second rainy season. In contrast, those of S. pruinosus started to lose viability after 6 months of burial at the end of the rainy season and were mostly dead at the end of the dry season. This difference in persistence between species was related to a difference in the glutathione content and antioxidant enzyme activities. In both storage experiments, the loss of viability of both species was associated to a EGSSG/2GSH shift to a more oxidative state during burial. Yet, contents in MDA and oxidized soluble proteins were not related to redox imbalance and loss of viability, indicating that these compounds are not good markers of oxidative stress in cacti seeds during storage.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧化还原失衡导致两种仙人掌物种的种子失去活力
这项研究深入探讨了仙人掌种子 Escontria chiotilla (F.A.C. Weber ex K. Schum) 和 Stenocereus pruinosus (Otto ex Pfeiff.) Buxbaum 在 25 °C、干燥和黑暗条件下原地贮藏或在干旱灌木林中原地埋藏的退化情况。评估了活力、发芽速度、电解质渗漏和氧化还原平衡指标,包括谷胱甘肽含量、谷胱甘肽半电池还原电位(ESSG/2GSH)和丙二醛(MDA)、氧化蛋白质含量以及水溶性抗氧化酶活性。与埋在土壤中的种子相比,在含水量为 7-9% 的条件下原地贮藏的种子在两年的贮藏期内保持了活力。第二次埋藏实验表明,蚕豆种子在包括雨季和旱季在内的一年贮藏期间保持了活力。此后,它们在第二个雨季迅速死亡。相比之下,S. pruinosus 的种子在雨季结束时埋藏 6 个月后开始失去活力,在旱季结束时大部分死亡。物种间存活率的差异与谷胱甘肽含量和抗氧化酶活性的差异有关。在两次贮藏实验中,两个物种活力的丧失都与掩埋过程中 EGSSG/2GSH 转向更氧化的状态有关。然而,MDA 和氧化可溶性蛋白的含量与氧化还原失衡和活力丧失无关,这表明这些化合物不是仙人掌种子在贮藏期间氧化应激的良好标记。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Seed Science Research
Seed Science Research 生物-植物科学
CiteScore
3.60
自引率
4.80%
发文量
23
审稿时长
>12 weeks
期刊介绍: Seed Science Research, the official journal of the International Society for Seed Science, is a leading international journal featuring high-quality original papers and review articles on the fundamental aspects of seed science, reviewed by internationally distinguished editors. The emphasis is on the physiology, biochemistry, molecular biology and ecology of seeds.
期刊最新文献
Redox imbalance accompanies loss of viability in seeds of two cacti species buried in situ Phylogenetic trends in TZ staining analysis of six deep dormancy seeds Likelihood ratio test for the analysis of germination percentages Interactions between seed functional traits and environmental factors and their influence on germination performance of Australian native species The re-establishment of desiccation tolerance in germinated tomato (Solanum lycopersicum) seeds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1