A NEW PERSPECTIVE ON THE NONLINEAR DATE–JIMBO–KASHIWARA–MIWA EQUATION IN FRACTAL MEDIA

Fractals Pub Date : 2024-04-12 DOI:10.1142/s0218348x2450066x
JIANSHE SUN
{"title":"A NEW PERSPECTIVE ON THE NONLINEAR DATE–JIMBO–KASHIWARA–MIWA EQUATION IN FRACTAL MEDIA","authors":"JIANSHE SUN","doi":"10.1142/s0218348x2450066x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we first created a fractal Date–Jimbo–Kashiwara–Miwa (FDJKM) long ripple wave model in a non-smooth boundary or microgravity space recorded. Using fractal semi-inverse skill (FSIS) and fractal traveling wave transformation (FTWT), the fractal variational principle (FVP) was derived, and the strong minimum necessary circumstance was attested with the He Wierstrass function. We have discovered two distinct solitary wave solutions, the square form of the hyperbolic secant function and the hyperbolic secant function form. Then, soliton solutions are cultivated through FVP and the minimum steady state condition. Finally, the influences of non-smooth boundaries on solitons were tackled, and the properties of the solution were demonstrated through three-dimensional contour lines. Fractal dimension can impact waveforms, but cannot affect their vertex values. The presentation of soliton solutions (SWS) using techniques is not only laudable but also noteworthy. The technique employed can also be used to investigate solitary wave solutions of other local fractional calculus partial differential equations.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x2450066x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we first created a fractal Date–Jimbo–Kashiwara–Miwa (FDJKM) long ripple wave model in a non-smooth boundary or microgravity space recorded. Using fractal semi-inverse skill (FSIS) and fractal traveling wave transformation (FTWT), the fractal variational principle (FVP) was derived, and the strong minimum necessary circumstance was attested with the He Wierstrass function. We have discovered two distinct solitary wave solutions, the square form of the hyperbolic secant function and the hyperbolic secant function form. Then, soliton solutions are cultivated through FVP and the minimum steady state condition. Finally, the influences of non-smooth boundaries on solitons were tackled, and the properties of the solution were demonstrated through three-dimensional contour lines. Fractal dimension can impact waveforms, but cannot affect their vertex values. The presentation of soliton solutions (SWS) using techniques is not only laudable but also noteworthy. The technique employed can also be used to investigate solitary wave solutions of other local fractional calculus partial differential equations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分形介质中非线性枣金博柏原三和方程的新视角
本文首先创建了非光滑边界或微重力空间记录的分形Date-Jimbo-Kashiwara-Miwa(FDJKM)长波纹模型。利用分形半逆技术(FSIS)和分形行波变换(FTWT),我们得出了分形变分原理(FVP),并用 He Wierstrass 函数证明了强最小必要条件。我们发现了两种不同的孤波解,即双曲正割函数的平方形式和双曲正割函数形式。然后,通过 FVP 和最小稳态条件培育出孤子解。最后,解决了非光滑边界对孤子的影响,并通过三维等高线展示了解的特性。分形维度会影响波形,但不会影响其顶点值。利用技术展示孤子解(SWS)不仅值得称赞,而且值得关注。所采用的技术还可用于研究其他局部分数微积分偏微分方程的孤波解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fractal Geometry-Based Resource Allocation for MIMO Radar A Reliable Numerical Algorithm for Treatment of Fractional Model of Convective Straight Fins with Temperature Dependent Thermal Conductivity Reducing PAPR in OTFS 6G Waveforms Using Particle Swarm Optimization-Based PTS and SLM Techniques with 64, 256, and 512 Sub-Carriers in Rician and Rayleigh Channels Enhancing OTFS Modulation for 6G through Hybrid PAPR Reduction Technique for Different Sub-Carriers Fractal Peak Power Analysis on NOMA Waveforms using the PTS Method for different Sub-Carriers: Applications in 5G and Beyond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1