Image clustering using generated text centroids

IF 3.4 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Signal Processing-Image Communication Pub Date : 2024-04-12 DOI:10.1016/j.image.2024.117128
Daehyeon Kong , Kyeongbo Kong , Suk-Ju Kang
{"title":"Image clustering using generated text centroids","authors":"Daehyeon Kong ,&nbsp;Kyeongbo Kong ,&nbsp;Suk-Ju Kang","doi":"10.1016/j.image.2024.117128","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, deep neural networks pretrained on large-scale datasets have been used to address data deficiency and achieve better performance through prior knowledge. Contrastive language–image pretraining (CLIP), a vision-language model pretrained on an extensive dataset, achieves better performance in image recognition. In this study, we harness the power of multimodality in image clustering tasks, shifting from a single modality to a multimodal framework using the describability property of image encoder of the CLIP model. The importance of this shift lies in the ability of multimodality to provide richer feature representations. By generating text centroids corresponding to image features, we effectively create a common descriptive language for each cluster. It generates text centroids assigned by the image features and improves the clustering performance. The text centroids use the results generated by using the standard clustering algorithm as a pseudo-label and learn a common description of each cluster. Finally, only text centroids were added when the image features on the same space were assigned to the text centroids, but the clustering performance improved significantly compared to the standard clustering algorithm, especially on complex datasets. When the proposed method is applied, the normalized mutual information score rises by 32% on the Stanford40 dataset and 64% on ImageNet-Dog compared to the <span><math><mi>k</mi></math></span>-means clustering algorithm.</p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"125 ","pages":"Article 117128"},"PeriodicalIF":3.4000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596524000298","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, deep neural networks pretrained on large-scale datasets have been used to address data deficiency and achieve better performance through prior knowledge. Contrastive language–image pretraining (CLIP), a vision-language model pretrained on an extensive dataset, achieves better performance in image recognition. In this study, we harness the power of multimodality in image clustering tasks, shifting from a single modality to a multimodal framework using the describability property of image encoder of the CLIP model. The importance of this shift lies in the ability of multimodality to provide richer feature representations. By generating text centroids corresponding to image features, we effectively create a common descriptive language for each cluster. It generates text centroids assigned by the image features and improves the clustering performance. The text centroids use the results generated by using the standard clustering algorithm as a pseudo-label and learn a common description of each cluster. Finally, only text centroids were added when the image features on the same space were assigned to the text centroids, but the clustering performance improved significantly compared to the standard clustering algorithm, especially on complex datasets. When the proposed method is applied, the normalized mutual information score rises by 32% on the Stanford40 dataset and 64% on ImageNet-Dog compared to the k-means clustering algorithm.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用生成的文本中心点进行图像聚类
近年来,在大规模数据集上进行预训练的深度神经网络被用于解决数据不足的问题,并通过先验知识获得更好的性能。对比语言-图像预训练(CLIP)是一种在大规模数据集上预训练的视觉语言模型,在图像识别中取得了更好的性能。在本研究中,我们在图像聚类任务中利用了多模态的力量,利用 CLIP 模型图像编码器的可描述性,从单一模态框架转向多模态框架。这种转变的重要性在于多模态能够提供更丰富的特征表示。通过生成与图像特征相对应的文本中心点,我们有效地为每个集群创建了一种通用的描述语言。它能生成由图像特征指定的文本中心点,并提高聚类性能。文本中心点使用标准聚类算法生成的结果作为伪标签,并学习每个聚类的通用描述。最后,在将同一空间的图像特征分配给文本中心点时,只添加了文本中心点,但聚类性能与标准聚类算法相比有了显著提高,尤其是在复杂数据集上。与 k-means 聚类算法相比,应用提出的方法后,归一化互信息得分在 Stanford40 数据集上提高了 32%,在 ImageNet-Dog 上提高了 64%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Signal Processing-Image Communication
Signal Processing-Image Communication 工程技术-工程:电子与电气
CiteScore
8.40
自引率
2.90%
发文量
138
审稿时长
5.2 months
期刊介绍: Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following: To present a forum for the advancement of theory and practice of image communication. To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems. To contribute to a rapid information exchange between the industrial and academic environments. The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world. Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments. Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.
期刊最新文献
SES-ReNet: Lightweight deep learning model for human detection in hazy weather conditions HOI-V: One-stage human-object interaction detection based on multi-feature fusion in videos Text in the dark: Extremely low-light text image enhancement High efficiency deep image compression via channel-wise scale adaptive latent representation learning Double supervision for scene text detection and recognition based on BMINet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1