{"title":"The succession of ecological divergence and reproductive isolation in adaptive radiations","authors":"Mikael Pontarp, Per Lundberg, Jörgen Ripa","doi":"10.1016/j.jtbi.2024.111819","DOIUrl":null,"url":null,"abstract":"<div><p>Adaptive radiation is a major source of biodiversity but the way in which known components of ecological opportunity, ecological differentiation, and reproductive isolation underpin such biodiversity patterns remains elusive. Much is known about the evolution of ecological differentiation and reproductive isolation during single speciation events, but exactly how those processes scale up to complete adaptive radiations is less understood. Do we expect complete reproductive barriers between newly formed species before the ecological differentiation continues, or does proper species formation occur much later, long after the ecological diversification? Our goal is to improve our mechanistic understanding of adaptive radiations by analyzing an individual-based model that includes a suite of mechanisms that are known to contribute to biodiversity. The model includes variable biogeographic settings, ecological opportunities, and types of mate choice, which makes several different scenarios of an adaptive radiation possible. We find that evolving clades tend to exploit ecological opportunities early whereas reproductive barriers evolve later, demonstrating a decoupling of ecological differentiation and species formation. In many cases, we also find a long-term trend where assortative mating associated with ecological traits is replaced by sexual selection of neutral display traits as the primary mechanism for reproductive isolation. Our results propose that reticulate phylogenies are likely common and stem from initially low reproductive barriers, rather than the previously suggested idea of repeated hybridization events between well-separated species.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022519324001000/pdfft?md5=e36f69f48461a0e02a0b1c4f51dbd47c&pid=1-s2.0-S0022519324001000-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022519324001000","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Adaptive radiation is a major source of biodiversity but the way in which known components of ecological opportunity, ecological differentiation, and reproductive isolation underpin such biodiversity patterns remains elusive. Much is known about the evolution of ecological differentiation and reproductive isolation during single speciation events, but exactly how those processes scale up to complete adaptive radiations is less understood. Do we expect complete reproductive barriers between newly formed species before the ecological differentiation continues, or does proper species formation occur much later, long after the ecological diversification? Our goal is to improve our mechanistic understanding of adaptive radiations by analyzing an individual-based model that includes a suite of mechanisms that are known to contribute to biodiversity. The model includes variable biogeographic settings, ecological opportunities, and types of mate choice, which makes several different scenarios of an adaptive radiation possible. We find that evolving clades tend to exploit ecological opportunities early whereas reproductive barriers evolve later, demonstrating a decoupling of ecological differentiation and species formation. In many cases, we also find a long-term trend where assortative mating associated with ecological traits is replaced by sexual selection of neutral display traits as the primary mechanism for reproductive isolation. Our results propose that reticulate phylogenies are likely common and stem from initially low reproductive barriers, rather than the previously suggested idea of repeated hybridization events between well-separated species.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.