Cong-Xue Liu, Soomin Hwang, Hyerin Woo, Eunsung Lee, Sarah S. Park
{"title":"From structure to function: Harnessing the ionic conductivity of covalent organic frameworks","authors":"Cong-Xue Liu, Soomin Hwang, Hyerin Woo, Eunsung Lee, Sarah S. Park","doi":"10.1002/bkcs.12823","DOIUrl":null,"url":null,"abstract":"<p>Rapid advancements in energy storage technology, driven by a growing demand for energy storage devices, underscore the crucial need to comprehend ionic conduction behavior. Consequently, intensive research on high-performance ionic conductors becomes imperative. Covalent organic frameworks (COFs) have emerged as invaluable materials in the realm of solid-state or quasi-solid-state ion-conduction, leveraging their unique properties such as significant porosity, tunability, and robust physicochemical durability. These distinctive attributes position COFs as promising candidates for the development of electrodes, electrolytes, and separator materials characterized by high capacities, rapid ion transport, and electrochemical stability. This review provides insights into COFs as ionic conductors, discusses recent advancements in COF-based energy storage devices, and explores the influence of structural functionalization, pore size engineering, and dimensional regulation on ionic conduction. Moreover, the review aims to deepen understanding and pave the way for future advancements in the utilization of COFs within energy storage technologies.</p>","PeriodicalId":54252,"journal":{"name":"Bulletin of the Korean Chemical Society","volume":"45 4","pages":"296-307"},"PeriodicalIF":1.7000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Korean Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bkcs.12823","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid advancements in energy storage technology, driven by a growing demand for energy storage devices, underscore the crucial need to comprehend ionic conduction behavior. Consequently, intensive research on high-performance ionic conductors becomes imperative. Covalent organic frameworks (COFs) have emerged as invaluable materials in the realm of solid-state or quasi-solid-state ion-conduction, leveraging their unique properties such as significant porosity, tunability, and robust physicochemical durability. These distinctive attributes position COFs as promising candidates for the development of electrodes, electrolytes, and separator materials characterized by high capacities, rapid ion transport, and electrochemical stability. This review provides insights into COFs as ionic conductors, discusses recent advancements in COF-based energy storage devices, and explores the influence of structural functionalization, pore size engineering, and dimensional regulation on ionic conduction. Moreover, the review aims to deepen understanding and pave the way for future advancements in the utilization of COFs within energy storage technologies.
期刊介绍:
The Bulletin of the Korean Chemical Society is an official research journal of the Korean Chemical Society. It was founded in 1980 and reaches out to the chemical community worldwide. It is strictly peer-reviewed and welcomes Accounts, Communications, Articles, and Notes written in English. The scope of the journal covers all major areas of chemistry: analytical chemistry, electrochemistry, industrial chemistry, inorganic chemistry, life-science chemistry, macromolecular chemistry, organic synthesis, non-synthetic organic chemistry, physical chemistry, and materials chemistry.