{"title":"CTCOSY-JRES: A high-resolution three-dimensional NMR method for unveiling J-couplings","authors":"Xiaoqing Lin, Yulei Chen, Chengda Huang, Xiaozhen Feng, Bo Chen, Yuqing Huang, Zhong Chen","doi":"10.1016/j.jmr.2024.107675","DOIUrl":null,"url":null,"abstract":"<div><p>Two-dimensional (2D) <em>J</em>-resolved spectroscopy provides valuable information on <em>J</em>-coupling constants for molecular structure analysis by resolving one-dimensional (1D) spectra. However, it is challenging to decipher the <em>J</em>-coupling connectivity in 2D <em>J</em>-resolved spectra because the <em>J</em>-coupling connectivity cannot be directly provided. In addition, 2D homonuclear correlation spectroscopy (COSY) can directly elucidate molecular structures by tracking the <em>J</em>-coupling connectivity between protons. However, this method is limited by the problem of spectral peak crowding and is only suitable for simple sample systems. To fully understand the intuitive coupling relationship and coupling constant information, we propose a three-dimensional (3D) COSY method called CTCOSY-<em>J</em>RES (Constant-Time COrrelation SpectroscopY and <em>J</em>-REsolved Spectroscopy) in this paper. By combining the <em>J</em>-resolved spectrum with the constant-time COSY technique, a doubly decoupled COSY spectrum can be provided while preserving the <em>J</em>-coupling constant along an additional dimension, ensuring high-resolution analysis of <em>J</em>-coupling connectivity and <em>J</em>-coupling information. Moreover, compression sensing and fold-over correction techniques are introduced to accelerate experimental acquisition. The CTCOSY-<em>J</em>RES method has been successfully validated in a variety of sample systems, including industrial, agricultural, and biopharmaceutical samples, revealing complex coupling interactions and providing deeper insights into the resolution of molecular structures.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"362 ","pages":"Article 107675"},"PeriodicalIF":2.0000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780724000594","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional (2D) J-resolved spectroscopy provides valuable information on J-coupling constants for molecular structure analysis by resolving one-dimensional (1D) spectra. However, it is challenging to decipher the J-coupling connectivity in 2D J-resolved spectra because the J-coupling connectivity cannot be directly provided. In addition, 2D homonuclear correlation spectroscopy (COSY) can directly elucidate molecular structures by tracking the J-coupling connectivity between protons. However, this method is limited by the problem of spectral peak crowding and is only suitable for simple sample systems. To fully understand the intuitive coupling relationship and coupling constant information, we propose a three-dimensional (3D) COSY method called CTCOSY-JRES (Constant-Time COrrelation SpectroscopY and J-REsolved Spectroscopy) in this paper. By combining the J-resolved spectrum with the constant-time COSY technique, a doubly decoupled COSY spectrum can be provided while preserving the J-coupling constant along an additional dimension, ensuring high-resolution analysis of J-coupling connectivity and J-coupling information. Moreover, compression sensing and fold-over correction techniques are introduced to accelerate experimental acquisition. The CTCOSY-JRES method has been successfully validated in a variety of sample systems, including industrial, agricultural, and biopharmaceutical samples, revealing complex coupling interactions and providing deeper insights into the resolution of molecular structures.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.