{"title":"SIRS epidemics with individual heterogeneity of immunity waning","authors":"Mohamed El Khalifi , Tom Britton","doi":"10.1016/j.jtbi.2024.111815","DOIUrl":null,"url":null,"abstract":"<div><p>In the current paper we analyse an extended SIRS epidemic model in which immunity at the individual level wanes gradually at exponential rate, but where the waning rate may differ between individuals, for instance as an effect of differences in immune systems. The model also includes vaccination schemes aimed to reach and maintain herd immunity. We consider both the <em>informed</em> situation where the individual waning parameters are known, thus allowing selection of vaccinees being based on both time since last vaccination as well as on the individual waning rate, and the more likely <em>uninformed</em> situation where individual waning parameters are unobserved, thus only allowing vaccination schemes to depend on time since last vaccination. The optimal vaccination policies for both the informed and uniformed heterogeneous situation are derived and compared with the homogeneous waning model (meaning all individuals have the same immunity waning rate), as well as to the classic SIRS model where immunity at the individual level drops from complete immunity to complete susceptibility in one leap. It is shown that the classic SIRS model requires least vaccines, followed by the SIRS with homogeneous gradual waning, followed by the informed situation for the model with heterogeneous gradual waning. The situation requiring most vaccines for herd immunity is the most likely scenario, that immunity wanes gradually with unobserved individual heterogeneity. For parameter values chosen to mimic COVID-19 and assuming perfect initial immunity and cumulative immunity of 12 months, the classic homogeneous SIRS epidemic suggests that vaccinating individuals every 15 months is sufficient to reach and maintain herd immunity, whereas the uninformed case for exponential waning with rate heterogeneity corresponding to a coefficient of variation being 0.5, requires that individuals instead need to be vaccinated every 4.4 months.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022519324000961","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the current paper we analyse an extended SIRS epidemic model in which immunity at the individual level wanes gradually at exponential rate, but where the waning rate may differ between individuals, for instance as an effect of differences in immune systems. The model also includes vaccination schemes aimed to reach and maintain herd immunity. We consider both the informed situation where the individual waning parameters are known, thus allowing selection of vaccinees being based on both time since last vaccination as well as on the individual waning rate, and the more likely uninformed situation where individual waning parameters are unobserved, thus only allowing vaccination schemes to depend on time since last vaccination. The optimal vaccination policies for both the informed and uniformed heterogeneous situation are derived and compared with the homogeneous waning model (meaning all individuals have the same immunity waning rate), as well as to the classic SIRS model where immunity at the individual level drops from complete immunity to complete susceptibility in one leap. It is shown that the classic SIRS model requires least vaccines, followed by the SIRS with homogeneous gradual waning, followed by the informed situation for the model with heterogeneous gradual waning. The situation requiring most vaccines for herd immunity is the most likely scenario, that immunity wanes gradually with unobserved individual heterogeneity. For parameter values chosen to mimic COVID-19 and assuming perfect initial immunity and cumulative immunity of 12 months, the classic homogeneous SIRS epidemic suggests that vaccinating individuals every 15 months is sufficient to reach and maintain herd immunity, whereas the uninformed case for exponential waning with rate heterogeneity corresponding to a coefficient of variation being 0.5, requires that individuals instead need to be vaccinated every 4.4 months.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.