Deep reinforcement learning for PMSG wind turbine control via twin delayed deep deterministic policy gradient (TD3)

Darkhan Zholtayev, Matteo Rubagotti, Ton Duc Do
{"title":"Deep reinforcement learning for PMSG wind turbine control via twin delayed deep deterministic policy gradient (TD3)","authors":"Darkhan Zholtayev, Matteo Rubagotti, Ton Duc Do","doi":"10.1002/oca.3129","DOIUrl":null,"url":null,"abstract":"This article proposes the use of a deep reinforcement learning method—and precisely a variant of the deep deterministic policy gradient (DDPG) method known as twin delayed DDPG, or TD3—for maximum power point tracking in wind energy conversion systems that use permanent magnet synchronous generators (PMSGs). An overview of the TD3 algorithm is provided, together with a detailed description of its implementation and training for the considered application. Simulation results are provided, also including a comparison with a model‐based control method based on feedback linearization and linear‐quadratic regulation. The proposed TD3‐based controller achieves a satisfactory control performance and is more robust to PMSG parameter variations as compared to the presented model‐based method. To the best of the authors' knowledge, this article presents for the first time an approach for generating both speed and current control loops using DRL for wind energy conversion systems.","PeriodicalId":501055,"journal":{"name":"Optimal Control Applications and Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oca.3129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article proposes the use of a deep reinforcement learning method—and precisely a variant of the deep deterministic policy gradient (DDPG) method known as twin delayed DDPG, or TD3—for maximum power point tracking in wind energy conversion systems that use permanent magnet synchronous generators (PMSGs). An overview of the TD3 algorithm is provided, together with a detailed description of its implementation and training for the considered application. Simulation results are provided, also including a comparison with a model‐based control method based on feedback linearization and linear‐quadratic regulation. The proposed TD3‐based controller achieves a satisfactory control performance and is more robust to PMSG parameter variations as compared to the presented model‐based method. To the best of the authors' knowledge, this article presents for the first time an approach for generating both speed and current control loops using DRL for wind energy conversion systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过双延迟深度确定性策略梯度(TD3)对 PMSG 风机控制进行深度强化学习
本文提出在使用永磁同步发电机(PMSG)的风能转换系统中使用深度强化学习方法--确切地说,是深度确定性策略梯度(DDPG)方法的一种变体,即孪生延迟 DDPG 或 TD3--来实现最大功率点跟踪。本文概述了 TD3 算法,并详细描述了该算法的实施和针对所考虑应用的训练。还提供了仿真结果,包括与基于反馈线性化和线性二次调节的模型控制方法的比较。与所提出的基于模型的方法相比,所提出的基于 TD3 的控制器实现了令人满意的控制性能,并且对 PMSG 参数变化具有更强的鲁棒性。据作者所知,本文首次提出了一种利用 DRL 为风能转换系统生成速度和电流控制回路的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An optimal demand side management for microgrid cost minimization considering renewables Output feedback control of anti‐linear systems using adaptive dynamic programming Reachable set estimation of delayed Markovian jump neural networks based on an augmented zero equality approach Adaptive neural network dynamic surface optimal saturation control for single‐phase grid‐connected photovoltaic systems Intelligent integration of ANN and H‐infinity control for optimal enhanced performance of a wind generation unit linked to a power system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1