{"title":"A Novel FSVM with PSO for gait phase detection based on elastic pressure sensing insole system","authors":"Pingping Lv, Chi Zhang, Feng Yi, Ting Yuan, Shupei Li, Meitong Zhang","doi":"10.1007/s41315-024-00334-1","DOIUrl":null,"url":null,"abstract":"<p>The precise gait phase detection with lightweight equipment under variable conditions is crucial for low limb exoskeleton robots. Therefore, the kinematics and dynamics information are investigated. In this paper, a novel radius-margin-based support vector machine (SVM) model with particle swarm optimization (PSO) in feature space called PSO-FSVM is proposed for gait phase detection. The proposed method addresses the dual objectives of maximizing margin while minimizing radius, employing PSO to fine-tune the parameters of the FSVM. This enhancement significantly bolsters the classification accuracy of the SVM. For the measurement of gait features with a lightweight sensor system, the plantar pressure insoles equipped with flexible and elastic sensors are designed. To evaluate the effectiveness of our method, we conducted comparative experiments, pitting the proposed PSO-FSVM against other support vector machine variants, across four treadmill speeds. The experimental results indicate that the proposed method achieves an accuracy of over 98% at four different speeds indoors. Furthermore, the proposed method is compared with other algorithms (SVM, k-nearest neighbor (KNN), adaptive boosting (AdaBoost), and quadratic discriminant analysis (QDA)) under outdoor experiments. The experimental results demonstrate that the average recognition accuracy of this method reaches 96.13% under variable speed conditions, with an average accuracy of 98.06% under slow walking conditions, surpassing the performance of the above four algorithms.</p>","PeriodicalId":44563,"journal":{"name":"International Journal of Intelligent Robotics and Applications","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Robotics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41315-024-00334-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The precise gait phase detection with lightweight equipment under variable conditions is crucial for low limb exoskeleton robots. Therefore, the kinematics and dynamics information are investigated. In this paper, a novel radius-margin-based support vector machine (SVM) model with particle swarm optimization (PSO) in feature space called PSO-FSVM is proposed for gait phase detection. The proposed method addresses the dual objectives of maximizing margin while minimizing radius, employing PSO to fine-tune the parameters of the FSVM. This enhancement significantly bolsters the classification accuracy of the SVM. For the measurement of gait features with a lightweight sensor system, the plantar pressure insoles equipped with flexible and elastic sensors are designed. To evaluate the effectiveness of our method, we conducted comparative experiments, pitting the proposed PSO-FSVM against other support vector machine variants, across four treadmill speeds. The experimental results indicate that the proposed method achieves an accuracy of over 98% at four different speeds indoors. Furthermore, the proposed method is compared with other algorithms (SVM, k-nearest neighbor (KNN), adaptive boosting (AdaBoost), and quadratic discriminant analysis (QDA)) under outdoor experiments. The experimental results demonstrate that the average recognition accuracy of this method reaches 96.13% under variable speed conditions, with an average accuracy of 98.06% under slow walking conditions, surpassing the performance of the above four algorithms.
期刊介绍:
The International Journal of Intelligent Robotics and Applications (IJIRA) fosters the dissemination of new discoveries and novel technologies that advance developments in robotics and their broad applications. This journal provides a publication and communication platform for all robotics topics, from the theoretical fundamentals and technological advances to various applications including manufacturing, space vehicles, biomedical systems and automobiles, data-storage devices, healthcare systems, home appliances, and intelligent highways. IJIRA welcomes contributions from researchers, professionals and industrial practitioners. It publishes original, high-quality and previously unpublished research papers, brief reports, and critical reviews. Specific areas of interest include, but are not limited to:Advanced actuators and sensorsCollective and social robots Computing, communication and controlDesign, modeling and prototypingHuman and robot interactionMachine learning and intelligenceMobile robots and intelligent autonomous systemsMulti-sensor fusion and perceptionPlanning, navigation and localizationRobot intelligence, learning and linguisticsRobotic vision, recognition and reconstructionBio-mechatronics and roboticsCloud and Swarm roboticsCognitive and neuro roboticsExploration and security roboticsHealthcare, medical and assistive roboticsRobotics for intelligent manufacturingService, social and entertainment roboticsSpace and underwater robotsNovel and emerging applications