Enhancing Electrical Power Demand Prediction Using LSTM-Based Deep Learning Models for Local Energy Communities

IF 1.7 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Electric Power Components and Systems Pub Date : 2024-04-04 DOI:10.1080/15325008.2024.2316246
M. Pushpavalli, D. Dhanya, Megha Kulkarni, R. Rajitha Jasmine, B. Umarani, M. RamprasadReddy, Durga Prasad Garapati, Ajay Singh Yadav, A. Rajaram
{"title":"Enhancing Electrical Power Demand Prediction Using LSTM-Based Deep Learning Models for Local Energy Communities","authors":"M. Pushpavalli, D. Dhanya, Megha Kulkarni, R. Rajitha Jasmine, B. Umarani, M. RamprasadReddy, Durga Prasad Garapati, Ajay Singh Yadav, A. Rajaram","doi":"10.1080/15325008.2024.2316246","DOIUrl":null,"url":null,"abstract":"The pursuit of accurate electrical power demand forecasting has led to the application of deep learning algorithms, notably demonstrating promising outcomes despite the prerequisite of substantial ...","PeriodicalId":50548,"journal":{"name":"Electric Power Components and Systems","volume":"25 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electric Power Components and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15325008.2024.2316246","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The pursuit of accurate electrical power demand forecasting has led to the application of deep learning algorithms, notably demonstrating promising outcomes despite the prerequisite of substantial ...
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于 LSTM 的深度学习模型加强当地能源社区的电力需求预测
在追求准确的电力需求预测的过程中,深度学习算法得到了应用,尽管其前提条件是大量的...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electric Power Components and Systems
Electric Power Components and Systems 工程技术-工程:电子与电气
CiteScore
2.70
自引率
6.70%
发文量
95
审稿时长
7.2 months
期刊介绍: Electric Power Components and Systems publishes original theoretical and applied papers of permanent reference value related to the broad field of electric machines and drives, power electronics converters, electromechanical devices, electrical equipment, renewable and sustainable electric energy applications, and power systems. Specific topics covered include: -Electric machines- Solid-state control of electric machine drives- Power electronics converters- Electromagnetic fields in energy converters- Renewable energy generators and systems- Power system planning- Transmission and distribution- Power system protection- Dispatching and scheduling- Stability, reliability, and security- Renewable energy integration- Smart-grid and micro-grid technologies.
期刊最新文献
Review Study on Recent Advancements in Islanding Detection and Diagnosis in Microgrids Using Signal Processing and Machine Learning Techniques Improved Reference Current Extraction Method for Electric Aircraft Active Power Filter Application Low Cost Low Power TEG Based Generator Including Passive Solar Tracking and Passive Cooling Processes Fault Diagnosis of Induction Machine for Rotor Cage Damage Using MCSA for Industrial Application Improved Incremental Conductance MPPT Technique Designed to Addressing Drift Problem in a Photovoltaic System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1