{"title":"An improved CapsNet based on data augmentation for driver vigilance estimation with forehead single-channel EEG","authors":"Huizhou Yang, Jingwen Huang, Yifei Yu, Zhigang Sun, Shouyi Zhang, Yunfei Liu, Han Liu, Lijuan Xia","doi":"10.1007/s11571-024-10105-0","DOIUrl":null,"url":null,"abstract":"<p>Various studies have shown that it is necessary to estimate the drivers’ vigilance to reduce the occurrence of traffic accidents. Most existing EEG-based vigilance estimation studies have been performed on intra-subject and multi-channel signals, and these methods are too costly and complicated to implement in practice. Hence, aiming at the problem of cross-subject vigilance estimation of single-channel EEG signals, an estimation algorithm based on capsule network (CapsNet) is proposed. Firstly, we propose a new construction method of the input feature maps to fit the characteristics of CapsNet to improve the algorithm accuracy. Meanwhile, the self-attention mechanism is incorporated in the algorithm to focus on the key information in feature maps. Secondly, we propose substituting the traditional multi-channel signals with the single-channel signals to improve the utility of algorithm. Thirdly, since the single-channel signals carry fewer dimensions of the information compared to the multi-channel signals, we use the conditional generative adversarial network to improve the accuracy of single-channel signals by increasing the amount of data. The proposed algorithm is verified on the SEED-VIG, and Root-mean-square-error (RMSE) and Pearson Correlation Coefficient (PCC) are used as the evaluation metrics. The results show that the proposed algorithm improves the computing speed while the RMSE is reduced by 3%, and the PCC is improved by 12% compared to the mainstream algorithm. Experiment results prove the feasibility of using forehead single-channel EEG signals for cross-subject vigilance estimation and offering the possibility of lightweight EEG vigilance estimation devices for practical applications.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"148 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10105-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Various studies have shown that it is necessary to estimate the drivers’ vigilance to reduce the occurrence of traffic accidents. Most existing EEG-based vigilance estimation studies have been performed on intra-subject and multi-channel signals, and these methods are too costly and complicated to implement in practice. Hence, aiming at the problem of cross-subject vigilance estimation of single-channel EEG signals, an estimation algorithm based on capsule network (CapsNet) is proposed. Firstly, we propose a new construction method of the input feature maps to fit the characteristics of CapsNet to improve the algorithm accuracy. Meanwhile, the self-attention mechanism is incorporated in the algorithm to focus on the key information in feature maps. Secondly, we propose substituting the traditional multi-channel signals with the single-channel signals to improve the utility of algorithm. Thirdly, since the single-channel signals carry fewer dimensions of the information compared to the multi-channel signals, we use the conditional generative adversarial network to improve the accuracy of single-channel signals by increasing the amount of data. The proposed algorithm is verified on the SEED-VIG, and Root-mean-square-error (RMSE) and Pearson Correlation Coefficient (PCC) are used as the evaluation metrics. The results show that the proposed algorithm improves the computing speed while the RMSE is reduced by 3%, and the PCC is improved by 12% compared to the mainstream algorithm. Experiment results prove the feasibility of using forehead single-channel EEG signals for cross-subject vigilance estimation and offering the possibility of lightweight EEG vigilance estimation devices for practical applications.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.