{"title":"Local Structure and Optical Studies of Mn2+ Doped L-histidine-4-nitrophenolate 4-nitrophenol Single Crystal","authors":"Maroj Bharati, Vikram Singh, Ram Kripal","doi":"10.2174/0115734110295420240314052821","DOIUrl":null,"url":null,"abstract":"Background: The zero-field splitting parameters of Mn2+ doped L-histidine-4- nitrophenolate 4-nitrophenol single crystals are evaluated Methods: The superposition model and perturbation theory are used to obtain zero-field splitting parameters for Mn2+ ion-doped LHPP single crystals. The optical spectra of the system are computed using the crystal field parameters from the superposition model as input into the crystal field analysis program. Results: The evaluated zero field splitting parameters are in good match with the experimental values when local distortion is taken into account. The experimental finding that the Mn2+ ion enters the L-histidine-4-nitrophenolate 4-nitrophenol lattice at the interstitial position is supported by the theoretical result. Conclusion: It is found that the calculated and experimental band positions agree fairly well. Thus, the theoretical study supports the experimental observation.","PeriodicalId":10742,"journal":{"name":"Current Analytical Chemistry","volume":"28 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0115734110295420240314052821","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The zero-field splitting parameters of Mn2+ doped L-histidine-4- nitrophenolate 4-nitrophenol single crystals are evaluated Methods: The superposition model and perturbation theory are used to obtain zero-field splitting parameters for Mn2+ ion-doped LHPP single crystals. The optical spectra of the system are computed using the crystal field parameters from the superposition model as input into the crystal field analysis program. Results: The evaluated zero field splitting parameters are in good match with the experimental values when local distortion is taken into account. The experimental finding that the Mn2+ ion enters the L-histidine-4-nitrophenolate 4-nitrophenol lattice at the interstitial position is supported by the theoretical result. Conclusion: It is found that the calculated and experimental band positions agree fairly well. Thus, the theoretical study supports the experimental observation.
期刊介绍:
Current Analytical Chemistry publishes full-length/mini reviews and original research articles on the most recent advances in analytical chemistry. All aspects of the field are represented, including analytical methodology, techniques, and instrumentation in both fundamental and applied research topics of interest to the broad readership of the journal. Current Analytical Chemistry strives to serve as an authoritative source of information in analytical chemistry and in related applications such as biochemical analysis, pharmaceutical research, quantitative biological imaging, novel sensors, and nanotechnology.