Automated sample preparation for electrospray ionization mass spectrometry based on CLOCK-controlled autonomous centrifugal microfluidics

IF 3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Biomedical Microdevices Pub Date : 2024-04-09 DOI:10.1007/s10544-024-00703-4
Masahiro Futami, Hiroki Naito, Satoshi Ninomiya, Lee Chuin Chen, Tomohiko Iwano, Kentaro Yoshimura, Yoshiaki Ukita
{"title":"Automated sample preparation for electrospray ionization mass spectrometry based on CLOCK-controlled autonomous centrifugal microfluidics","authors":"Masahiro Futami,&nbsp;Hiroki Naito,&nbsp;Satoshi Ninomiya,&nbsp;Lee Chuin Chen,&nbsp;Tomohiko Iwano,&nbsp;Kentaro Yoshimura,&nbsp;Yoshiaki Ukita","doi":"10.1007/s10544-024-00703-4","DOIUrl":null,"url":null,"abstract":"<div><p>We report a centrifugal microfluidic device that automatically performs sample preparation under steady-state rotation for clinical applications using mass spectrometry. The autonomous microfluidic device was designed for the control of liquid operation on centrifugal hydrokinetics (CLOCK) paradigm. The reported device was highly stable, with less than 7% variation with respect to the time of each unit operation (sample extraction, mixing, and supernatant extraction) in the preparation process. An agitation mechanism with bubbling was used to mix the sample and organic solvent in this device. We confirmed that the device effectively removed the protein aggregates from the sample, and the performance was comparable to those of conventional manual sample preparation procedures that use high-speed centrifugation. In addition, probe electrospray ionization mass spectrometry (PESI-MS) was performed to compare the device-treated and manually treated samples. The obtained PESI-MS spectra were analyzed by partial least squares discriminant analysis, and the preparation capability of the device was found to be equivalent to that of the conventional method.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"26 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10544-024-00703-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-024-00703-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We report a centrifugal microfluidic device that automatically performs sample preparation under steady-state rotation for clinical applications using mass spectrometry. The autonomous microfluidic device was designed for the control of liquid operation on centrifugal hydrokinetics (CLOCK) paradigm. The reported device was highly stable, with less than 7% variation with respect to the time of each unit operation (sample extraction, mixing, and supernatant extraction) in the preparation process. An agitation mechanism with bubbling was used to mix the sample and organic solvent in this device. We confirmed that the device effectively removed the protein aggregates from the sample, and the performance was comparable to those of conventional manual sample preparation procedures that use high-speed centrifugation. In addition, probe electrospray ionization mass spectrometry (PESI-MS) was performed to compare the device-treated and manually treated samples. The obtained PESI-MS spectra were analyzed by partial least squares discriminant analysis, and the preparation capability of the device was found to be equivalent to that of the conventional method.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 CLOCK 控制的自主离心微流控技术的电喷雾离子化质谱自动样品制备技术
我们报告了一种离心微流控装置,它能在稳态旋转状态下自动进行样品制备,用于质谱分析的临床应用。该自主微流控装置是为控制离心水动力学(CLOCK)范式的液体操作而设计的。所报告的设备高度稳定,在制备过程中,每个单元操作(样品提取、混合和上清液提取)的时间变化小于 7%。该装置采用了带气泡的搅拌机制来混合样品和有机溶剂。我们证实,该装置能有效去除样品中的蛋白质聚集体,其性能与使用高速离心的传统手动样品制备程序相当。此外,我们还进行了探针电喷雾离子化质谱(PESI-MS)分析,以比较装置处理过的样品和人工处理过的样品。通过偏最小二乘法判别分析获得的 PESI-MS 图谱,发现该装置的制备能力与传统方法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Microdevices
Biomedical Microdevices 工程技术-工程:生物医学
CiteScore
6.90
自引率
3.60%
发文量
32
审稿时长
6 months
期刊介绍: Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology. General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules. Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.
期刊最新文献
Smartphone-driven centrifugal microfluidics for diagnostics in resource limited settings Enhancing biomedical imaging: the role of nanoparticle-based contrast agents Panoramic review on polymeric microneedle arrays for clinical applications Construction of a pumpless gravity-driven vascularized Skin-on-a-Chip for the study of hepatocytotoxicity in percutaneous exposure to exogenous chemicals Functionalization of microbubbles in a microfluidic chip for biosensing application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1