{"title":"Lagrangian Stochastic Modeling of Stratified Atmospheric Boundary Layer","authors":"Jihoon Shin, Jong-Jin Baik","doi":"10.1007/s10546-023-00849-3","DOIUrl":null,"url":null,"abstract":"<p>A single-column turbulence model for stratified atmospheric boundary layer (ABL), which solves the transport equations of turbulence probability density function (PDF) using a Lagrangian stochastic modeling (LSM) approach, is proposed in this study. This study adopts previously developed stochastic differential equations (SDEs) for particle velocity and temperature and extends the LSM to simulate inhomogeneous turbulence. The proposed LSM is tested for its ability to fully simulate statistics of inhomogeneous stratified turbulence. In the model, particles evolve by SDEs, and turbulence statistics are calculated by averaging the properties of particles. The model provides a full representation of turbulence PDF and simulates turbulent transport without any modeling assumption. The model performance is evaluated against large-eddy simulation (LES) results in the simulations of convective and stable ABL cases. For the convective ABL, LSM realistically simulates the entrainment process with the temperature and heat flux profiles that closely match with LES. The joint PDF simulated by LSM reproduces a curved and highly skewed shape, and some distinct features, like the asymmetric distribution of vertical velocity and the separation of the PDF in the entrainment zone, are simulated. LSM also reproduces the entrainment enhancement by wind shear in the simulation of sheared convective ABL. The LSM simulation of stable ABL predicts realistic turbulence intensity and mean field profiles, where Gaussian-like PDFs are simulated both in LSM and LES.</p>","PeriodicalId":9153,"journal":{"name":"Boundary-Layer Meteorology","volume":"124 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary-Layer Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10546-023-00849-3","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A single-column turbulence model for stratified atmospheric boundary layer (ABL), which solves the transport equations of turbulence probability density function (PDF) using a Lagrangian stochastic modeling (LSM) approach, is proposed in this study. This study adopts previously developed stochastic differential equations (SDEs) for particle velocity and temperature and extends the LSM to simulate inhomogeneous turbulence. The proposed LSM is tested for its ability to fully simulate statistics of inhomogeneous stratified turbulence. In the model, particles evolve by SDEs, and turbulence statistics are calculated by averaging the properties of particles. The model provides a full representation of turbulence PDF and simulates turbulent transport without any modeling assumption. The model performance is evaluated against large-eddy simulation (LES) results in the simulations of convective and stable ABL cases. For the convective ABL, LSM realistically simulates the entrainment process with the temperature and heat flux profiles that closely match with LES. The joint PDF simulated by LSM reproduces a curved and highly skewed shape, and some distinct features, like the asymmetric distribution of vertical velocity and the separation of the PDF in the entrainment zone, are simulated. LSM also reproduces the entrainment enhancement by wind shear in the simulation of sheared convective ABL. The LSM simulation of stable ABL predicts realistic turbulence intensity and mean field profiles, where Gaussian-like PDFs are simulated both in LSM and LES.
期刊介绍:
Boundary-Layer Meteorology offers several publishing options: Research Letters, Research Articles, and Notes and Comments. The Research Letters section is designed to allow quick dissemination of new scientific findings, with an initial review period of no longer than one month. The Research Articles section offers traditional scientific papers that present results and interpretations based on substantial research studies or critical reviews of ongoing research. The Notes and Comments section comprises occasional notes and comments on specific topics with no requirement for rapid publication. Research Letters are limited in size to five journal pages, including no more than three figures, and cannot contain supplementary online material; Research Articles are generally fifteen to twenty pages in length with no more than fifteen figures; Notes and Comments are limited to ten journal pages and five figures. Authors submitting Research Letters should include within their cover letter an explanation of the need for rapid publication. More information regarding all publication formats can be found in the recent Editorial ‘Introducing Research Letters to Boundary-Layer Meteorology’.