Flexural behavior of reinforced concrete beams strengthened with gradually prestressed near surface mounted carbon fiber-reinforced polymer strips under static and fatigue loading

IF 2.1 4区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Advances in Structural Engineering Pub Date : 2024-04-08 DOI:10.1177/13694332241246374
Shuang Gong, Miao Su, Jianren Zhang, Hui Peng
{"title":"Flexural behavior of reinforced concrete beams strengthened with gradually prestressed near surface mounted carbon fiber-reinforced polymer strips under static and fatigue loading","authors":"Shuang Gong, Miao Su, Jianren Zhang, Hui Peng","doi":"10.1177/13694332241246374","DOIUrl":null,"url":null,"abstract":"The near surface mounted (NSM) carbon fiber-reinforced polymer (CFRP) strengthening technique, combined with gradually anchored prestressed technique, is utilized to delay the occurrence of concrete cover separation (CCS) and enhance the ductility of reinforced concrete beams. The load-carrying capacity of fully prestressed beams and gradually prestressed beams are investigated under both static and fatigue loading conditions. The study focused on the effect of gradient prestress on flexural behavior of strengthened beams, analyzed the failure mode, characteristic load, ductility, and stress distribution at CFRP-concrete interface under both prestress and load conditions. Results indicate that gradually prestressed beams outperform fully prestressed ones in restraining crack development, delaying yield of tensile reinforcement, improving bearing capacity and avoiding CCS failure. Bearing capacity was significantly increased by up to 35.48%, while ductility was greatly improved by 100.33% with ultimate deflection for gradually prestressed beams compared to fully prestressed ones. The fatigue life of gradually prestressed beams, which experienced a transition from CCS failure mode to fatigue fracture of tensile reinforcement, was significantly extended. Additionally, their ductility at failure was also greatly enhanced, thus confirming the effectiveness of gradually prestressed NSM CFRP strengthening technique.","PeriodicalId":50849,"journal":{"name":"Advances in Structural Engineering","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Structural Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13694332241246374","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The near surface mounted (NSM) carbon fiber-reinforced polymer (CFRP) strengthening technique, combined with gradually anchored prestressed technique, is utilized to delay the occurrence of concrete cover separation (CCS) and enhance the ductility of reinforced concrete beams. The load-carrying capacity of fully prestressed beams and gradually prestressed beams are investigated under both static and fatigue loading conditions. The study focused on the effect of gradient prestress on flexural behavior of strengthened beams, analyzed the failure mode, characteristic load, ductility, and stress distribution at CFRP-concrete interface under both prestress and load conditions. Results indicate that gradually prestressed beams outperform fully prestressed ones in restraining crack development, delaying yield of tensile reinforcement, improving bearing capacity and avoiding CCS failure. Bearing capacity was significantly increased by up to 35.48%, while ductility was greatly improved by 100.33% with ultimate deflection for gradually prestressed beams compared to fully prestressed ones. The fatigue life of gradually prestressed beams, which experienced a transition from CCS failure mode to fatigue fracture of tensile reinforcement, was significantly extended. Additionally, their ductility at failure was also greatly enhanced, thus confirming the effectiveness of gradually prestressed NSM CFRP strengthening technique.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
静载和疲劳载荷下使用渐进预应力近表面安装碳纤维增强聚合物条加固的钢筋混凝土梁的挠曲行为
近表面安装(NSM)碳纤维增强聚合物(CFRP)加固技术与渐进锚固预应力技术相结合,可延缓混凝土覆盖层分离(CCS)的发生,提高钢筋混凝土梁的延性。研究了全预应力梁和渐进预应力梁在静载和疲劳载荷条件下的承载能力。研究重点是梯度预应力对加固梁抗弯行为的影响,分析了预应力和荷载条件下 CFRP-混凝土界面的破坏模式、特征荷载、延性和应力分布。结果表明,渐变预应力梁在抑制裂缝发展、延迟受拉钢筋屈服、提高承载能力和避免 CCS 失效方面优于全预应力梁。与全预应力梁相比,渐进预应力梁的承载能力大幅提高了 35.48%,而延性则大幅提高了 100.33%(极限挠度)。逐渐预应力梁的疲劳寿命从 CCS 失效模式过渡到受拉钢筋的疲劳断裂,从而大大延长。此外,其破坏时的延性也大大提高,从而证实了逐步预应力 NSM CFRP 加固技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Structural Engineering
Advances in Structural Engineering 工程技术-工程:土木
CiteScore
5.00
自引率
11.50%
发文量
230
审稿时长
2.3 months
期刊介绍: Advances in Structural Engineering was established in 1997 and has become one of the major peer-reviewed journals in the field of structural engineering. To better fulfil the mission of the journal, we have recently decided to launch two new features for the journal: (a) invited review papers providing an in-depth exposition of a topic of significant current interest; (b) short papers reporting truly new technologies in structural engineering.
期刊最新文献
Multi-experimental seismic analysis of low-rise thin reinforced concrete wall building with unconnected elastomeric isolators using real-time hybrid simulations Prediction and optimization framework of shear strength of reinforced concrete flanged shear wall based on machine learning and non-dominated sorting genetic algorithm-II Deep learning-based minute-scale digital prediction model for temperature induced deflection of a multi-tower double-layer steel truss bridge Experimental investigation on shear behavior of double-row perforated GFRP rib connectors in FRP-concrete hybrid beams Seismic response prediction method of train-bridge coupled system based on convolutional neural network-bidirectional long short-term memory-attention modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1