Inspection of Press Joints Based on the Analysis of Their Deformation Patterns under Local Thermal Loading

IF 0.9 4区 材料科学 Q4 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Russian Journal of Nondestructive Testing Pub Date : 2024-04-09 DOI:10.1134/S1061830923601356
S. A. Bekher, A. A. Popkov, A. S. Vyplaven, V. N. Fedorinin, V. I. Sidorov, S. P. Shlyakhtenkov, I. Yu. Kinzhagulov
{"title":"Inspection of Press Joints Based on the Analysis of Their Deformation Patterns under Local Thermal Loading","authors":"S. A. Bekher,&nbsp;A. A. Popkov,&nbsp;A. S. Vyplaven,&nbsp;V. N. Fedorinin,&nbsp;V. I. Sidorov,&nbsp;S. P. Shlyakhtenkov,&nbsp;I. Yu. Kinzhagulov","doi":"10.1134/S1061830923601356","DOIUrl":null,"url":null,"abstract":"<p>The results of experimental studies of the possibility of using strain gauges under local pulsed thermal loading to evaluate the tension of the press connections of bearing rings with shafts are presented. Samples of press-fit joints in the range from 38 to 118 μm were prepared. As a result of the study of the patterns of heat flow propagation in bearing rings and tension samples by contact method and by means of thermal imaging, the possibility of separating strains associated with the influence of temperature on the strain measurement area and the temperature gradient in the heating area is shown. The methods of inspecting a press joint exposed to a heater ring with a heat power capacity of 80 kJ and a temperature of 200°C and measuring the strains of the ring and shaft by an opto-polarizing sensor with a base of 60 mm and a resolution of <span>\\(2 \\times {{10}^{{ - 7}}}\\)</span> relative deformation units have been experimentally implemented. A correlation has been established between the time of reaching the maximum of local strains in the shaft with the tightness of the press joints and of the sign of strains in the bearing ring with a press fit leak with the gap between the ring and the shaft.</p>","PeriodicalId":764,"journal":{"name":"Russian Journal of Nondestructive Testing","volume":"60 1","pages":"54 - 62"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Nondestructive Testing","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1061830923601356","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

The results of experimental studies of the possibility of using strain gauges under local pulsed thermal loading to evaluate the tension of the press connections of bearing rings with shafts are presented. Samples of press-fit joints in the range from 38 to 118 μm were prepared. As a result of the study of the patterns of heat flow propagation in bearing rings and tension samples by contact method and by means of thermal imaging, the possibility of separating strains associated with the influence of temperature on the strain measurement area and the temperature gradient in the heating area is shown. The methods of inspecting a press joint exposed to a heater ring with a heat power capacity of 80 kJ and a temperature of 200°C and measuring the strains of the ring and shaft by an opto-polarizing sensor with a base of 60 mm and a resolution of \(2 \times {{10}^{{ - 7}}}\) relative deformation units have been experimentally implemented. A correlation has been established between the time of reaching the maximum of local strains in the shaft with the tightness of the press joints and of the sign of strains in the bearing ring with a press fit leak with the gap between the ring and the shaft.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
根据局部热负荷下的变形模式分析检测压力接头
摘要 本文介绍了在局部脉冲热加载条件下使用应变片评估轴承套圈与轴的压紧连接张力的可能性的实验研究结果。研究人员制备了 38 至 118 μm 范围内的压配接头样品。通过接触法和热成像法研究了轴承套圈和拉伸样品中的热流传播模式,结果表明可以分离与温度对应变测量区域的影响和加热区域的温度梯度有关的应变。实验中采用了以下方法:检测暴露在热功率为 80 kJ、温度为 200°C 的加热器环上的压力机接头,并通过基座为 60 mm、分辨率为 \(2 \times {{10}^{{ - 7}}}) 相对变形单位的光偏振传感器测量环和轴的应变。在轴的局部应变达到最大值的时间与压紧接头的松紧度之间,以及在压紧配合泄漏的轴承套圈的应变符号与套圈和轴之间的间隙之间建立了相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Russian Journal of Nondestructive Testing
Russian Journal of Nondestructive Testing 工程技术-材料科学:表征与测试
CiteScore
1.60
自引率
44.40%
发文量
59
审稿时长
6-12 weeks
期刊介绍: Russian Journal of Nondestructive Testing, a translation of Defectoskopiya, is a publication of the Russian Academy of Sciences. This publication offers current Russian research on the theory and technology of nondestructive testing of materials and components. It describes laboratory and industrial investigations of devices and instrumentation and provides reviews of new equipment developed for series manufacture. Articles cover all physical methods of nondestructive testing, including magnetic and electrical; ultrasonic; X-ray and Y-ray; capillary; liquid (color luminescence), and radio (for materials of low conductivity).
期刊最新文献
Laser Ultrasonic Measurements for Generation and Detection of Lateral Waves in a Solid for Surface Defect Inspection Sparse Optimal Design of Ultrasonic Phased Array for Efficient DMAS Imaging Developing a Method for Assessing the Degree of Hydrogenation of VT1-0 Titanium Alloy by the Acoustic Method Layered Composite Hydrogenated Films of Zirconium and Niobium: Production Method and Testing Using Thermo EMF (Thermoelectric Method) Evaluating Efficiency of Foreign Object Detection Technology Based on the Use of Passive Infrared Thermography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1