{"title":"Inhibition of Notch3/Hey1 ameliorates peribiliary hypoxia by preventing hypertrophic hepatic arteriopathy in biliary atresia progression","authors":"Xiaopan Chang, Shuiqing Chi, Xi Zhang, Xiangyang Li, Cheng Yu, Ying Zhou, Shaotao Tang","doi":"10.1007/s00418-024-02278-w","DOIUrl":null,"url":null,"abstract":"<p>Emerging evidence indicates the presence of vascular abnormalities and ischemia in biliary atresia (BA), although specific mechanisms remain undefined. This study examined both human and experimental BA. Structural and hemodynamic features of hepatic arteries were investigated by Doppler ultrasound, indocyanine green angiography, microscopic histology, and invasive arterial pressure measurement. Opal multiplex immunohistochemistry, western blot, and RT-PCR were applied to assess Notch3 expression and the phenotype of hepatic arterial smooth muscle cells (HASMCs). We established animal models of Notch3 inhibition, overexpression, and knockout to evaluate the differences in overall survival, hepatic artery morphology, peribiliary hypoxia, and HASMC phenotype. Hypertrophic hepatic arteriopathy was evidenced by an increased wall-to-lumen ratio and clinically manifested as hepatic arterial hypertension, decreased hepatic artery perfusion, and formation of hepatic subcapsular vascular plexuses (HSVPs). We observed a correlation between overactivation of Notch3 and phenotypic disruption of HASMCs with the exacerbation of peribiliary hypoxia. Notch3 signaling mediated the phenotype alteration of HASMCs, resulting in arterial wall thickening and impaired oxygen supply in the portal microenvironment. Inhibition of Notch3/Hey1 ameliorates portal hypoxia by restoring the balance of contractile/synthetic HASMCs, thereby preventing hypertrophic arteriopathy in BA.</p>","PeriodicalId":13107,"journal":{"name":"Histochemistry and Cell Biology","volume":"32 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Histochemistry and Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00418-024-02278-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Emerging evidence indicates the presence of vascular abnormalities and ischemia in biliary atresia (BA), although specific mechanisms remain undefined. This study examined both human and experimental BA. Structural and hemodynamic features of hepatic arteries were investigated by Doppler ultrasound, indocyanine green angiography, microscopic histology, and invasive arterial pressure measurement. Opal multiplex immunohistochemistry, western blot, and RT-PCR were applied to assess Notch3 expression and the phenotype of hepatic arterial smooth muscle cells (HASMCs). We established animal models of Notch3 inhibition, overexpression, and knockout to evaluate the differences in overall survival, hepatic artery morphology, peribiliary hypoxia, and HASMC phenotype. Hypertrophic hepatic arteriopathy was evidenced by an increased wall-to-lumen ratio and clinically manifested as hepatic arterial hypertension, decreased hepatic artery perfusion, and formation of hepatic subcapsular vascular plexuses (HSVPs). We observed a correlation between overactivation of Notch3 and phenotypic disruption of HASMCs with the exacerbation of peribiliary hypoxia. Notch3 signaling mediated the phenotype alteration of HASMCs, resulting in arterial wall thickening and impaired oxygen supply in the portal microenvironment. Inhibition of Notch3/Hey1 ameliorates portal hypoxia by restoring the balance of contractile/synthetic HASMCs, thereby preventing hypertrophic arteriopathy in BA.
期刊介绍:
Histochemistry and Cell Biology is devoted to the field of molecular histology and cell biology, publishing original articles dealing with the localization and identification of molecular components, metabolic activities and cell biological aspects of cells and tissues. Coverage extends to the development, application, and/or evaluation of methods and probes that can be used in the entire area of histochemistry and cell biology.