Unified Cross-Structural Motion Retargeting for Humanoid Characters

Haodong Zhang;Zhike Chen;Haocheng Xu;Lei Hao;Xiaofei Wu;Songcen Xu;Rong Xiong;Yue Wang
{"title":"Unified Cross-Structural Motion Retargeting for Humanoid Characters","authors":"Haodong Zhang;Zhike Chen;Haocheng Xu;Lei Hao;Xiaofei Wu;Songcen Xu;Rong Xiong;Yue Wang","doi":"10.1109/TVCG.2024.3386923","DOIUrl":null,"url":null,"abstract":"Motion retargeting for animation characters has potential applications in fields such as animation production and virtual reality. However, current methods either assume that the source and target characters have the same skeletal structure, or require designing and training specific model architectures for each structure. In this article, we aim to address the challenge of motion retargeting across previously unseen skeletal structures with a unified dynamic graph network. The proposed approach utilizes a dynamic graph transformation module to dynamically transfer latent motion features to different structures. We also take into consideration for intricate hand movements and model both torso and hand joints as graphs in a unified manner for whole-body motion retargeting. Our model allows the use of motion data from different structures to train a unified model and learns cross-structural motion retargeting in an unsupervised manner with unpaired data. Experimental results demonstrate the superiority of the proposed method in terms of data efficiency and performance on both seen and unseen structures.","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"31 7","pages":"3863-3876"},"PeriodicalIF":6.5000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10496240/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motion retargeting for animation characters has potential applications in fields such as animation production and virtual reality. However, current methods either assume that the source and target characters have the same skeletal structure, or require designing and training specific model architectures for each structure. In this article, we aim to address the challenge of motion retargeting across previously unseen skeletal structures with a unified dynamic graph network. The proposed approach utilizes a dynamic graph transformation module to dynamically transfer latent motion features to different structures. We also take into consideration for intricate hand movements and model both torso and hand joints as graphs in a unified manner for whole-body motion retargeting. Our model allows the use of motion data from different structures to train a unified model and learns cross-structural motion retargeting in an unsupervised manner with unpaired data. Experimental results demonstrate the superiority of the proposed method in terms of data efficiency and performance on both seen and unseen structures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
仿人角色的统一跨结构运动重定位
动画角色的运动重定向在动画制作和虚拟现实等领域具有潜在的应用前景。然而,当前的方法要么假设源字符和目标字符具有相同的骨架结构,要么需要为每个结构设计和训练特定的模型体系结构。在本文中,我们的目标是通过统一的动态图网络解决运动重定向在以前看不见的骨骼结构中的挑战。该方法利用动态图转换模块将潜在的运动特征动态地转移到不同的结构中。我们还考虑到复杂的手部运动,并以统一的方式将躯干和手部关节建模为图形,以实现全身运动的重新定位。我们的模型允许使用来自不同结构的运动数据来训练统一的模型,并使用未配对的数据以无监督的方式学习跨结构的运动重定向。实验结果证明了该方法在数据效率和可见结构和不可见结构性能方面的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Multimodal Framework for Understanding Collaborative Design Processes. DAVA: Decoding Art With Visual Analytics Through Feature Modeling and Multi-Agent Collaboration. ReVISit 2: A Full Experiment Life Cycle User Study Framework. Incorporating Drone into Mixed Reality for Enhanced Remote Collaboration: A User Study on Inspection Task. Parallel Clusters: Visual Comparison of Embeddings Based on Multi-Scale Neighborhood Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1