Sichao Chen, Chang Cai, Su Zheng, Jiangnan Li, Guowei Zhu, Jingyuan Li, Yazhou Yan, Yuan Dai, Wenbo Yin, Lingli Wang
{"title":"HierCGRA: A Novel Framework for Large-Scale CGRA with Hierarchical Modeling and Automated Design Space Exploration","authors":"Sichao Chen, Chang Cai, Su Zheng, Jiangnan Li, Guowei Zhu, Jingyuan Li, Yazhou Yan, Yuan Dai, Wenbo Yin, Lingli Wang","doi":"10.1145/3656176","DOIUrl":null,"url":null,"abstract":"<p>Coarse-grained reconfigurable arrays (CGRAs) are promising design choices in computation-intensive domains since they can strike a balance between energy efficiency and flexibility. A typical CGRA comprises processing elements (PEs) that can execute operations in applications and interconnections between them. Nevertheless, most CGRAs suffer from the ineffectiveness of supporting flexible architecture design and solving large-scale mapping problems. To address these challenges, we introduce HierCGRA, a novel framework that integrates hierarchical CGRA modeling, Chisel-based Verilog generation, LLVM-based data flow graph (DFG) generation, DFG mapping, and design space exploration (DSE). With the graph homomorphism (GH) mapping algorithm, HierCGRA achieves a faster mapping speed and higher PE utilization rate compared with the existing state-of-the-art CGRA frameworks. The proposed hierarchical mapping strategy achieves 41× speedup on average compared with the ILP mapping algorithm in CGRA-ME. Furthermore, the automated DSE based on Bayesian optimization achieves a significant performance improvement by the heterogeneity of PEs and interconnections. With these features, HierCGRA enables the agile development for large-scale CGRA and accelerates the process of finding a better CGRA architecture.</p>","PeriodicalId":49248,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems","volume":"34 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3656176","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Coarse-grained reconfigurable arrays (CGRAs) are promising design choices in computation-intensive domains since they can strike a balance between energy efficiency and flexibility. A typical CGRA comprises processing elements (PEs) that can execute operations in applications and interconnections between them. Nevertheless, most CGRAs suffer from the ineffectiveness of supporting flexible architecture design and solving large-scale mapping problems. To address these challenges, we introduce HierCGRA, a novel framework that integrates hierarchical CGRA modeling, Chisel-based Verilog generation, LLVM-based data flow graph (DFG) generation, DFG mapping, and design space exploration (DSE). With the graph homomorphism (GH) mapping algorithm, HierCGRA achieves a faster mapping speed and higher PE utilization rate compared with the existing state-of-the-art CGRA frameworks. The proposed hierarchical mapping strategy achieves 41× speedup on average compared with the ILP mapping algorithm in CGRA-ME. Furthermore, the automated DSE based on Bayesian optimization achieves a significant performance improvement by the heterogeneity of PEs and interconnections. With these features, HierCGRA enables the agile development for large-scale CGRA and accelerates the process of finding a better CGRA architecture.
期刊介绍:
TRETS is the top journal focusing on research in, on, and with reconfigurable systems and on their underlying technology. The scope, rationale, and coverage by other journals are often limited to particular aspects of reconfigurable technology or reconfigurable systems. TRETS is a journal that covers reconfigurability in its own right.
Topics that would be appropriate for TRETS would include all levels of reconfigurable system abstractions and all aspects of reconfigurable technology including platforms, programming environments and application successes that support these systems for computing or other applications.
-The board and systems architectures of a reconfigurable platform.
-Programming environments of reconfigurable systems, especially those designed for use with reconfigurable systems that will lead to increased programmer productivity.
-Languages and compilers for reconfigurable systems.
-Logic synthesis and related tools, as they relate to reconfigurable systems.
-Applications on which success can be demonstrated.
The underlying technology from which reconfigurable systems are developed. (Currently this technology is that of FPGAs, but research on the nature and use of follow-on technologies is appropriate for TRETS.)
In considering whether a paper is suitable for TRETS, the foremost question should be whether reconfigurability has been essential to success. Topics such as architecture, programming languages, compilers, and environments, logic synthesis, and high performance applications are all suitable if the context is appropriate. For example, an architecture for an embedded application that happens to use FPGAs is not necessarily suitable for TRETS, but an architecture using FPGAs for which the reconfigurability of the FPGAs is an inherent part of the specifications (perhaps due to a need for re-use on multiple applications) would be appropriate for TRETS.