Barry de Bruin, Kanishkan Vadivel, Mark Wijtvliet, Pekka Jääskeläinen, Henk Corporaal
{"title":"R-Blocks: an Energy-Efficient, Flexible, and Programmable CGRA","authors":"Barry de Bruin, Kanishkan Vadivel, Mark Wijtvliet, Pekka Jääskeläinen, Henk Corporaal","doi":"10.1145/3656642","DOIUrl":null,"url":null,"abstract":"<p>Emerging data-driven applications in the embedded, e-Health, and internet of things (IoT) domain require complex on-device signal analysis and data reduction to maximize energy efficiency on these energy-constrained devices. Coarse-grained reconfigurable architectures (CGRAs) have been proposed as a good compromise between flexibility and energy efficiency for ultra-low power (ULP) signal processing. Existing CGRAs are often specialized and domain-specific or can only accelerate simple kernels, which makes accelerating complete applications on a CGRA while maintaining high energy efficiency an open issue. Moreover, the lack of instruction set architecture (ISA) standardization across CGRAs makes code generation using current compiler technology a major challenge. This work introduces R-Blocks; a ULP CGRA with HW/SW co-design tool-flow based on the OpenASIP toolset. This CGRA is extremely flexible due to its well-established VLIW-SIMD execution model and support for flexible SIMD-processing, while maintaining an extremely high energy efficiency using software bypassing, optimized instruction delivery, and local scratchpad memories. R-Blocks is synthesized in a commercial 22-nm FD-SOI technology and achieves a full-system energy efficiency of 115 MOPS/mW on a common FFT benchmark, 1.45 × higher than a highly tuned embedded RISC-V processor. Comparable energy efficiency is obtained on multiple complex workloads, making R-Blocks a promising acceleration target for general-purpose computing.</p>","PeriodicalId":49248,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems","volume":"191 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3656642","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Emerging data-driven applications in the embedded, e-Health, and internet of things (IoT) domain require complex on-device signal analysis and data reduction to maximize energy efficiency on these energy-constrained devices. Coarse-grained reconfigurable architectures (CGRAs) have been proposed as a good compromise between flexibility and energy efficiency for ultra-low power (ULP) signal processing. Existing CGRAs are often specialized and domain-specific or can only accelerate simple kernels, which makes accelerating complete applications on a CGRA while maintaining high energy efficiency an open issue. Moreover, the lack of instruction set architecture (ISA) standardization across CGRAs makes code generation using current compiler technology a major challenge. This work introduces R-Blocks; a ULP CGRA with HW/SW co-design tool-flow based on the OpenASIP toolset. This CGRA is extremely flexible due to its well-established VLIW-SIMD execution model and support for flexible SIMD-processing, while maintaining an extremely high energy efficiency using software bypassing, optimized instruction delivery, and local scratchpad memories. R-Blocks is synthesized in a commercial 22-nm FD-SOI technology and achieves a full-system energy efficiency of 115 MOPS/mW on a common FFT benchmark, 1.45 × higher than a highly tuned embedded RISC-V processor. Comparable energy efficiency is obtained on multiple complex workloads, making R-Blocks a promising acceleration target for general-purpose computing.
期刊介绍:
TRETS is the top journal focusing on research in, on, and with reconfigurable systems and on their underlying technology. The scope, rationale, and coverage by other journals are often limited to particular aspects of reconfigurable technology or reconfigurable systems. TRETS is a journal that covers reconfigurability in its own right.
Topics that would be appropriate for TRETS would include all levels of reconfigurable system abstractions and all aspects of reconfigurable technology including platforms, programming environments and application successes that support these systems for computing or other applications.
-The board and systems architectures of a reconfigurable platform.
-Programming environments of reconfigurable systems, especially those designed for use with reconfigurable systems that will lead to increased programmer productivity.
-Languages and compilers for reconfigurable systems.
-Logic synthesis and related tools, as they relate to reconfigurable systems.
-Applications on which success can be demonstrated.
The underlying technology from which reconfigurable systems are developed. (Currently this technology is that of FPGAs, but research on the nature and use of follow-on technologies is appropriate for TRETS.)
In considering whether a paper is suitable for TRETS, the foremost question should be whether reconfigurability has been essential to success. Topics such as architecture, programming languages, compilers, and environments, logic synthesis, and high performance applications are all suitable if the context is appropriate. For example, an architecture for an embedded application that happens to use FPGAs is not necessarily suitable for TRETS, but an architecture using FPGAs for which the reconfigurability of the FPGAs is an inherent part of the specifications (perhaps due to a need for re-use on multiple applications) would be appropriate for TRETS.