A core of cell wall proteins functions in wall integrity responses in Arabidopsis thaliana

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-04-03 DOI:10.1002/pld3.579
Oyeyemi Ajayi, Ellen Zelinsky, Charles T. Anderson
{"title":"A core of cell wall proteins functions in wall integrity responses in Arabidopsis thaliana","authors":"Oyeyemi Ajayi, Ellen Zelinsky, Charles T. Anderson","doi":"10.1002/pld3.579","DOIUrl":null,"url":null,"abstract":"Cell walls surround all plant cells, and their composition and structure are tightly regulated to maintain cellular and organismal homeostasis. In response to wall damage, the cell wall integrity (CWI) system is engaged to ameliorate effects on plant growth. Despite the central role CWI plays in plant development, our current understanding of how this system functions at the molecular level is limited. Here, we investigated the transcriptomes of etiolated seedlings of mutants of <jats:styled-content style=\"fixed-case\"><jats:italic>Arabidopsis thaliana</jats:italic></jats:styled-content> with defects in three major wall polysaccharides, pectin (<jats:italic>quasimodo2</jats:italic>), cellulose (<jats:italic>cellulose synthase3</jats:italic><jats:sup><jats:italic>je5</jats:italic></jats:sup>), and xyloglucan (<jats:italic>xyloglucan xylosyltransferase1</jats:italic> and <jats:italic>2</jats:italic>), to probe whether changes in the expression of cell wall‐related genes occur and are similar or different when specific wall components are reduced or missing. Many changes occurred in the transcriptomes of pectin‐ and cellulose‐deficient plants, but fewer changes occurred in the transcriptomes of xyloglucan‐deficient plants. We hypothesize that this might be because pectins interact with other wall components and/or integrity sensors, whereas cellulose forms a major load‐bearing component of the wall; defects in either appear to trigger the expression of structural proteins to maintain wall cohesion in the absence of a major polysaccharide. This core set of genes functioning in CWI in plants represents an attractive target for future genetic engineering of robust and resilient cell walls.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pld3.579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Cell walls surround all plant cells, and their composition and structure are tightly regulated to maintain cellular and organismal homeostasis. In response to wall damage, the cell wall integrity (CWI) system is engaged to ameliorate effects on plant growth. Despite the central role CWI plays in plant development, our current understanding of how this system functions at the molecular level is limited. Here, we investigated the transcriptomes of etiolated seedlings of mutants of Arabidopsis thaliana with defects in three major wall polysaccharides, pectin (quasimodo2), cellulose (cellulose synthase3je5), and xyloglucan (xyloglucan xylosyltransferase1 and 2), to probe whether changes in the expression of cell wall‐related genes occur and are similar or different when specific wall components are reduced or missing. Many changes occurred in the transcriptomes of pectin‐ and cellulose‐deficient plants, but fewer changes occurred in the transcriptomes of xyloglucan‐deficient plants. We hypothesize that this might be because pectins interact with other wall components and/or integrity sensors, whereas cellulose forms a major load‐bearing component of the wall; defects in either appear to trigger the expression of structural proteins to maintain wall cohesion in the absence of a major polysaccharide. This core set of genes functioning in CWI in plants represents an attractive target for future genetic engineering of robust and resilient cell walls.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
拟南芥细胞壁蛋白核心在细胞壁完整性反应中发挥作用
细胞壁环绕着所有植物细胞,其组成和结构受到严格调控,以维持细胞和生物体的平衡。为应对细胞壁损伤,细胞壁完整性(CWI)系统会发挥作用,以改善对植物生长的影响。尽管 CWI 在植物生长过程中发挥着核心作用,但我们目前对该系统如何在分子水平上发挥作用的了解却很有限。在这里,我们研究了拟南芥果胶(quasimodo2)、纤维素(纤维素合成酶3je5)和木聚糖(木聚糖木糖基转移酶1和2)三种主要壁多糖缺陷突变体幼苗叶绿体的转录组,以探究当特定壁成分减少或缺失时,细胞壁相关基因的表达是否会发生变化,以及变化是相似还是不同。果胶和纤维素缺乏植物的转录组发生了许多变化,但木糖缺乏植物的转录组发生的变化较少。我们推测这可能是因为果胶与其他壁成分和/或完整性传感器相互作用,而纤维素则是壁的主要承重成分;其中任何一种成分的缺陷似乎都会引发结构蛋白的表达,从而在缺乏主要多糖的情况下维持壁的内聚力。这组在植物 CWI 中起作用的核心基因是未来对坚固而有弹性的细胞壁进行基因工程改造的一个有吸引力的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1