Accurate diagnosis of apical hypertrophic cardiomyopathy using explainable advanced ECG analysis

Rebecca K Hughes, George D Thornton, James W Malcolmson, Iain Pierce, Shafik Khoury, Amanda Hornell, Kristopher Knott, Gabriella Captur, James C Moon, Todd T Schlegel, Martin Ugander
{"title":"Accurate diagnosis of apical hypertrophic cardiomyopathy using explainable advanced ECG analysis","authors":"Rebecca K Hughes, George D Thornton, James W Malcolmson, Iain Pierce, Shafik Khoury, Amanda Hornell, Kristopher Knott, Gabriella Captur, James C Moon, Todd T Schlegel, Martin Ugander","doi":"10.1093/europace/euae093","DOIUrl":null,"url":null,"abstract":"Background and aims Typical electrocardiogram (ECG) features of apical hypertrophic cardiomyopathy (ApHCM) include tall R waves and deep or giant T-wave inversion in the precordial leads, but these features are not always present. The ECG is used as the gatekeeper to cardiac imaging for diagnosis. We tested whether explainable advanced ECG (A-ECG) could accurately diagnose ApHCM. Methods A-ECG analysis was performed on standard resting 12-lead ECGs in patients with ApHCM (n = 75 overt, n = 32 relative [<15mm hypertrophy]), a subgroup of which underwent cardiovascular magnetic resonance, n = 92), and comparator subjects (n = 2449), including healthy volunteers (n = 1672), patients with coronary artery disease (n = 372), left ventricular electrical remodelling (n = 108), ischemic (n = 114) or non-ischemic cardiomyopathy (n = 57), and asymmetrical septal hypertrophy (ASH) HCM (n = 126). Results Multivariable logistic regression identified four A-ECG measures that together discriminated ApHCM from other diseases with high accuracy (area under the receiver operating characteristics curve (AUC) [bootstrapped 95% confidence interval] 0.982 [0.965–0.993]. Linear discriminant analysis also diagnosed ApHCM with high accuracy (AUC 0.989 [0.986–0.991]). Conclusion Explainable A-ECG has excellent diagnostic accuracy for ApHCM, even when the hypertrophy is relative, with A-ECG analysis providing incremental diagnostic value over imaging alone. The electrical (ECG) and anatomical (wall thickness) disease features do not completely align, suggesting future diagnostic and management strategies may incorporate both features.","PeriodicalId":11720,"journal":{"name":"EP Europace","volume":"198 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EP Europace","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/europace/euae093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background and aims Typical electrocardiogram (ECG) features of apical hypertrophic cardiomyopathy (ApHCM) include tall R waves and deep or giant T-wave inversion in the precordial leads, but these features are not always present. The ECG is used as the gatekeeper to cardiac imaging for diagnosis. We tested whether explainable advanced ECG (A-ECG) could accurately diagnose ApHCM. Methods A-ECG analysis was performed on standard resting 12-lead ECGs in patients with ApHCM (n = 75 overt, n = 32 relative [<15mm hypertrophy]), a subgroup of which underwent cardiovascular magnetic resonance, n = 92), and comparator subjects (n = 2449), including healthy volunteers (n = 1672), patients with coronary artery disease (n = 372), left ventricular electrical remodelling (n = 108), ischemic (n = 114) or non-ischemic cardiomyopathy (n = 57), and asymmetrical septal hypertrophy (ASH) HCM (n = 126). Results Multivariable logistic regression identified four A-ECG measures that together discriminated ApHCM from other diseases with high accuracy (area under the receiver operating characteristics curve (AUC) [bootstrapped 95% confidence interval] 0.982 [0.965–0.993]. Linear discriminant analysis also diagnosed ApHCM with high accuracy (AUC 0.989 [0.986–0.991]). Conclusion Explainable A-ECG has excellent diagnostic accuracy for ApHCM, even when the hypertrophy is relative, with A-ECG analysis providing incremental diagnostic value over imaging alone. The electrical (ECG) and anatomical (wall thickness) disease features do not completely align, suggesting future diagnostic and management strategies may incorporate both features.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用可解释的高级心电图分析准确诊断心尖肥厚型心肌病
背景和目的 心尖肥厚型心肌病(ApHCM)的典型心电图(ECG)特征包括心前区导联的高R波和深型或巨型T波倒置,但这些特征并不总是存在。心电图是心脏成像诊断的 "守门员"。我们测试了可解释的高级心电图(A-ECG)能否准确诊断 ApHCM。方法 对 ApHCM 患者(n = 75 例明显肥厚,n = 32 例相对肥厚 [&lt.15mm])的标准静息 12 导联心电图进行 A-ECG 分析;15mm肥厚])(其中一个亚组进行了心血管磁共振检查,n = 92),以及对比受试者(n = 2449),包括健康志愿者(n = 1672)、冠状动脉疾病患者(n = 372)、左室电重塑患者(n = 108)、缺血性(n = 114)或非缺血性心肌病患者(n = 57),以及不对称室间隔肥厚(ASH)HCM 患者(n = 126)。结果 多变量逻辑回归确定了四种 A-ECG 测量方法,这些方法可将 ApHCM 与其他疾病高度准确地区分开来(接收器操作特征曲线下面积 (AUC) [自引导 95% 置信区间] 0.982 [0.965-0.993])。线性判别分析诊断 ApHCM 的准确率也很高(AUC 0.989 [0.986-0.991])。结论 可解释的 A-ECG 对 ApHCM 具有极高的诊断准确性,即使肥厚是相对的,A-ECG 分析也比单纯的影像学诊断具有更高的诊断价值。疾病的电学特征(心电图)和解剖学特征(心肌壁厚度)并不完全一致,这表明未来的诊断和管理策略可能会结合这两个特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High lead-related complication rate with MicroPort Vega active fixation pacing leads. Dual chamber versus single chamber pacemaker in patients in sinus rhythm with an atrioventricular block: a nationwide cohort study Ventricular Arrhythmias in Acute Heart Failure. A Clinical Consensus Statement of the Association for Acute CardioVascular Care Association (ACVC), the European Heart Rhythm Association (EHRA) and the Heart Failure Association (HFA) of the ESC Enhancing Origin Prediction: Deep Learning Model for Diagnosing Premature Ventricular Contractions with Dual-Rhythm Analysis Focused on Cardiac Rotation A computational study on the influence of antegrade accessory pathway location on the 12-lead electrocardiogram in Wolff-Parkinson-White syndrome
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1