Federico Emanuele Pozzi, Vittoria Aprea, Ginevra Giovannelli, Francesca Lattuada, Cinzia Crivellaro, Francesca Bertola, Veronica Castelnovo, Elisa Canu, Massimo Filippi, Ildebrando Appollonio, Carlo Ferrarese, Federica Agosta, Lucio Tremolizzo
{"title":"Clinical and neuroimaging characterization of the first frontotemporal dementia family carrying the MAPT p.K298E mutation","authors":"Federico Emanuele Pozzi, Vittoria Aprea, Ginevra Giovannelli, Francesca Lattuada, Cinzia Crivellaro, Francesca Bertola, Veronica Castelnovo, Elisa Canu, Massimo Filippi, Ildebrando Appollonio, Carlo Ferrarese, Federica Agosta, Lucio Tremolizzo","doi":"10.1007/s10048-024-00756-w","DOIUrl":null,"url":null,"abstract":"<p>We present an in-depth clinical and neuroimaging analysis of a family carrying the MAPT K298E mutation associated with frontotemporal dementia (FTD). Initial identification of this mutation in a single clinical case led to a comprehensive investigation involving four affected siblings allowing to elucidate the mutation's phenotypic expression.</p><p>A 60-year-old male presented with significant behavioral changes and progressed rapidly, exhibiting speech difficulties and cognitive decline. Neuroimaging via FDG-PET revealed asymmetrical frontotemporal hypometabolism. Three siblings subsequently showed varied but consistent clinical manifestations, including abnormal behavior, speech impairments, memory deficits, and motor symptoms correlating with asymmetric frontotemporal atrophy observed in MRI scans.</p><p>Based on the genotype–phenotype correlation, we propose that the p.K298E mutation results in early-onset behavioral variant FTD, accompanied by a various constellation of speech and motor impairment.</p><p>This detailed characterization expands the understanding of the p.K298E mutation's clinical and neuroimaging features, underlining its role in the pathogenesis of FTD. Further research is crucial to comprehensively delineate the clinical and epidemiological implications of the MAPT p.K298E mutation.</p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurogenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10048-024-00756-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We present an in-depth clinical and neuroimaging analysis of a family carrying the MAPT K298E mutation associated with frontotemporal dementia (FTD). Initial identification of this mutation in a single clinical case led to a comprehensive investigation involving four affected siblings allowing to elucidate the mutation's phenotypic expression.
A 60-year-old male presented with significant behavioral changes and progressed rapidly, exhibiting speech difficulties and cognitive decline. Neuroimaging via FDG-PET revealed asymmetrical frontotemporal hypometabolism. Three siblings subsequently showed varied but consistent clinical manifestations, including abnormal behavior, speech impairments, memory deficits, and motor symptoms correlating with asymmetric frontotemporal atrophy observed in MRI scans.
Based on the genotype–phenotype correlation, we propose that the p.K298E mutation results in early-onset behavioral variant FTD, accompanied by a various constellation of speech and motor impairment.
This detailed characterization expands the understanding of the p.K298E mutation's clinical and neuroimaging features, underlining its role in the pathogenesis of FTD. Further research is crucial to comprehensively delineate the clinical and epidemiological implications of the MAPT p.K298E mutation.
期刊介绍:
Neurogenetics publishes findings that contribute to a better understanding of the genetic basis of normal and abnormal function of the nervous system. Neurogenetic disorders are the main focus of the journal. Neurogenetics therefore includes findings in humans and other organisms that help understand neurological disease mechanisms and publishes papers from many different fields such as biophysics, cell biology, human genetics, neuroanatomy, neurochemistry, neurology, neuropathology, neurosurgery and psychiatry.
All papers submitted to Neurogenetics should be of sufficient immediate importance to justify urgent publication. They should present new scientific results. Data merely confirming previously published findings are not acceptable.