Decomposition Methods for Global Solution of Mixed-Integer Linear Programs

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED SIAM Journal on Optimization Pub Date : 2024-04-01 DOI:10.1137/22m1487321
Kaizhao Sun, Mou Sun, Wotao Yin
{"title":"Decomposition Methods for Global Solution of Mixed-Integer Linear Programs","authors":"Kaizhao Sun, Mou Sun, Wotao Yin","doi":"10.1137/22m1487321","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 2, Page 1206-1235, June 2024. <br/> Abstract. This paper introduces two decomposition-based methods for two-block mixed-integer linear programs (MILPs), which aim to take advantage of separable structures of the original problem by solving a sequence of lower-dimensional MILPs. The first method is based on the [math]-augmented Lagrangian method, and the second one is based on a modified alternating direction method of multipliers. In the presence of certain block-angular structures, both methods create parallel subproblems in one block of variables and add nonconvex cuts to update the other block; they converge to globally optimal solutions of the original MILP under proper conditions. Numerical experiments on three classes of MILPs demonstrate the advantages of the proposed methods on structured problems over the state-of-the-art MILP solvers.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1487321","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Optimization, Volume 34, Issue 2, Page 1206-1235, June 2024.
Abstract. This paper introduces two decomposition-based methods for two-block mixed-integer linear programs (MILPs), which aim to take advantage of separable structures of the original problem by solving a sequence of lower-dimensional MILPs. The first method is based on the [math]-augmented Lagrangian method, and the second one is based on a modified alternating direction method of multipliers. In the presence of certain block-angular structures, both methods create parallel subproblems in one block of variables and add nonconvex cuts to update the other block; they converge to globally optimal solutions of the original MILP under proper conditions. Numerical experiments on three classes of MILPs demonstrate the advantages of the proposed methods on structured problems over the state-of-the-art MILP solvers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合整数线性方程组全局求解的分解方法
SIAM 优化期刊》,第 34 卷第 2 期,第 1206-1235 页,2024 年 6 月。 摘要本文介绍了两种基于分解的两块混合整数线性程序(MILPs)方法,旨在通过求解一系列低维 MILPs 来利用原问题的可分离结构。第一种方法基于[math]增量拉格朗日法,第二种方法基于改进的乘法交替方向法。在存在某些块-角结构的情况下,这两种方法都能在一个变量块中创建并行子问题,并添加非凸切口来更新另一个变量块;在适当条件下,它们都能收敛到原始 MILP 的全局最优解。对三类 MILP 的数值实验表明,与最先进的 MILP 求解器相比,建议的方法在结构化问题上更具优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
SIAM Journal on Optimization
SIAM Journal on Optimization 数学-应用数学
CiteScore
5.30
自引率
9.70%
发文量
101
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.
期刊最新文献
Corrigendum and Addendum: Newton Differentiability of Convex Functions in Normed Spaces and of a Class of Operators Newton-Based Alternating Methods for the Ground State of a Class of Multicomponent Bose–Einstein Condensates Minimum Spanning Trees in Infinite Graphs: Theory and Algorithms On Minimal Extended Representations of Generalized Power Cones A Functional Model Method for Nonconvex Nonsmooth Conditional Stochastic Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1