Sebastian Banert, Jevgenija Rudzusika, Ozan Öktem, Jonas Adler
{"title":"Accelerated Forward-Backward Optimization Using Deep Learning","authors":"Sebastian Banert, Jevgenija Rudzusika, Ozan Öktem, Jonas Adler","doi":"10.1137/22m1532548","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 2, Page 1236-1263, June 2024. <br/> Abstract. We propose several deep-learning accelerated optimization solvers with convergence guarantees. We use ideas from the analysis of accelerated forward-backward schemes like FISTA, but instead of the classical approach of proving convergence for a choice of parameters, such as a step-size, we show convergence whenever the update is chosen in a specific set. Rather than picking a point in this set using some predefined method, we train a deep neural network to pick the best update within a given space. Finally, we show that the method is applicable to several cases of smooth and nonsmooth optimization and show superior results to established accelerated solvers.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1532548","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Optimization, Volume 34, Issue 2, Page 1236-1263, June 2024. Abstract. We propose several deep-learning accelerated optimization solvers with convergence guarantees. We use ideas from the analysis of accelerated forward-backward schemes like FISTA, but instead of the classical approach of proving convergence for a choice of parameters, such as a step-size, we show convergence whenever the update is chosen in a specific set. Rather than picking a point in this set using some predefined method, we train a deep neural network to pick the best update within a given space. Finally, we show that the method is applicable to several cases of smooth and nonsmooth optimization and show superior results to established accelerated solvers.
期刊介绍:
The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.