Chenhao Li, Martin Stražar, Ahmed M.T. Mohamed, Julian A. Pacheco, Rebecca L. Walker, Tina Lebar, Shijie Zhao, Julia Lockart, Andrea Dame, Kumar Thurimella, Sarah Jeanfavre, Eric M. Brown, Qi Yan Ang, Brittany Berdy, Dallis Sergio, Rachele Invernizzi, Antonio Tinoco, Gleb Pishchany, Ramachandran S. Vasan, Emily Balskus, Curtis Huttenhower, Hera Vlamakis, Clary Clish, Stanley Y. Shaw, Damian R. Plichta, Ramnik J. Xavier
{"title":"Gut microbiome and metabolome profiling in Framingham heart study reveals cholesterol-metabolizing bacteria","authors":"Chenhao Li, Martin Stražar, Ahmed M.T. Mohamed, Julian A. Pacheco, Rebecca L. Walker, Tina Lebar, Shijie Zhao, Julia Lockart, Andrea Dame, Kumar Thurimella, Sarah Jeanfavre, Eric M. Brown, Qi Yan Ang, Brittany Berdy, Dallis Sergio, Rachele Invernizzi, Antonio Tinoco, Gleb Pishchany, Ramachandran S. Vasan, Emily Balskus, Curtis Huttenhower, Hera Vlamakis, Clary Clish, Stanley Y. Shaw, Damian R. Plichta, Ramnik J. Xavier","doi":"10.1016/j.cell.2024.03.014","DOIUrl":null,"url":null,"abstract":"Accumulating evidence suggests that cardiovascular disease (CVD) is associated with an altered gut microbiome. Our understanding of the underlying mechanisms has been hindered by lack of matched multi-omic data with diagnostic biomarkers. To comprehensively profile gut microbiome contributions to CVD, we generated stool metagenomics and metabolomics from 1,429 Framingham Heart Study participants. We identified blood lipids and cardiovascular health measurements associated with microbiome and metabolome composition. Integrated analysis revealed microbial pathways implicated in CVD, including flavonoid, γ-butyrobetaine, and cholesterol metabolism. Species from the genus were associated with decreased fecal and plasma cholesterol levels. Using functional prediction and characterization of multiple representative human gut isolates, we uncovered conserved cholesterol-metabolizing capabilities, including glycosylation and dehydrogenation. These findings suggest that cholesterol metabolism is a broad property of phylogenetically diverse spp., with potential benefits for lipid homeostasis and cardiovascular health.","PeriodicalId":9656,"journal":{"name":"Cell","volume":null,"pages":null},"PeriodicalIF":45.5000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2024.03.014","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Accumulating evidence suggests that cardiovascular disease (CVD) is associated with an altered gut microbiome. Our understanding of the underlying mechanisms has been hindered by lack of matched multi-omic data with diagnostic biomarkers. To comprehensively profile gut microbiome contributions to CVD, we generated stool metagenomics and metabolomics from 1,429 Framingham Heart Study participants. We identified blood lipids and cardiovascular health measurements associated with microbiome and metabolome composition. Integrated analysis revealed microbial pathways implicated in CVD, including flavonoid, γ-butyrobetaine, and cholesterol metabolism. Species from the genus were associated with decreased fecal and plasma cholesterol levels. Using functional prediction and characterization of multiple representative human gut isolates, we uncovered conserved cholesterol-metabolizing capabilities, including glycosylation and dehydrogenation. These findings suggest that cholesterol metabolism is a broad property of phylogenetically diverse spp., with potential benefits for lipid homeostasis and cardiovascular health.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.