Praveen Chalissery, Christian Homann PhD, Herbert Stepp PhD, Maximilian Eisel PhD, Maximilian Aumiller PhD, Adrian Rühm PhD, Alexander Buchner MD, Ronald Sroka PhD
{"title":"Influence of vitamins and food on the fluorescence spectrum of human urine","authors":"Praveen Chalissery, Christian Homann PhD, Herbert Stepp PhD, Maximilian Eisel PhD, Maximilian Aumiller PhD, Adrian Rühm PhD, Alexander Buchner MD, Ronald Sroka PhD","doi":"10.1002/lsm.23785","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objectives</h3>\n \n <p>Fluorescence spectroscopy of human urine is a method with the potential to gain importance as a diagnostic tool in the medical field, e.g., for measuring Coproporphyrin III (CPIII) as an indicator of cancer and acute types of porphyria. Food can change human urine's color, which could influence the urine fluorescence spectrum and the detection of CPIII in urine. To determine if there is a noticeable influence on the urine fluorescence spectrum or on the detection of CPIII in urine, 16 vitamin supplements, and three food items were tested. Such investigation may also prevent false interpretation of measured data.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Urine samples were collected before and after (overnight, ca. 8 h) intake of each test substance. Samples were investigated by fluorescence spectrum analysis. At excitation wavelengths from 300 to 500 nm and emission wavelengths from 400 to 700 nm excitation-emission-matrices were measured. Data obtained from urine before intake were compared to the data from overnight urine. Furthermore, the investigation of any interference with the CPIII concentration was performed at an excitation wavelength of 407 ± 3 nm and emission wavelengths of 490−800 nm.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Only vitamin B2, but none of the other tested substances, showed noticeable influence on the urine fluorescence spectrum. None of the tested substances showed noticeable interference with the recovery rate of CPIII.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>The correct interpretation of measured data by fluorescence spectroscopy is possible with the exception if vitamin B2 supplementation was performed; thus, the consumption of vitamin B2 supplements before fluorescence testing of the patient's urine should be avoided and/or must be requested. CPIII concentrations could reliably be measured in all cases.</p>\n </section>\n </div>","PeriodicalId":17961,"journal":{"name":"Lasers in Surgery and Medicine","volume":"56 5","pages":"485-495"},"PeriodicalIF":2.2000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lsm.23785","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lasers in Surgery and Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lsm.23785","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives
Fluorescence spectroscopy of human urine is a method with the potential to gain importance as a diagnostic tool in the medical field, e.g., for measuring Coproporphyrin III (CPIII) as an indicator of cancer and acute types of porphyria. Food can change human urine's color, which could influence the urine fluorescence spectrum and the detection of CPIII in urine. To determine if there is a noticeable influence on the urine fluorescence spectrum or on the detection of CPIII in urine, 16 vitamin supplements, and three food items were tested. Such investigation may also prevent false interpretation of measured data.
Methods
Urine samples were collected before and after (overnight, ca. 8 h) intake of each test substance. Samples were investigated by fluorescence spectrum analysis. At excitation wavelengths from 300 to 500 nm and emission wavelengths from 400 to 700 nm excitation-emission-matrices were measured. Data obtained from urine before intake were compared to the data from overnight urine. Furthermore, the investigation of any interference with the CPIII concentration was performed at an excitation wavelength of 407 ± 3 nm and emission wavelengths of 490−800 nm.
Results
Only vitamin B2, but none of the other tested substances, showed noticeable influence on the urine fluorescence spectrum. None of the tested substances showed noticeable interference with the recovery rate of CPIII.
Conclusions
The correct interpretation of measured data by fluorescence spectroscopy is possible with the exception if vitamin B2 supplementation was performed; thus, the consumption of vitamin B2 supplements before fluorescence testing of the patient's urine should be avoided and/or must be requested. CPIII concentrations could reliably be measured in all cases.
期刊介绍:
Lasers in Surgery and Medicine publishes the highest quality research and clinical manuscripts in areas relating to the use of lasers in medicine and biology. The journal publishes basic and clinical studies on the therapeutic and diagnostic use of lasers in all the surgical and medical specialties. Contributions regarding clinical trials, new therapeutic techniques or instrumentation, laser biophysics and bioengineering, photobiology and photochemistry, outcomes research, cost-effectiveness, and other aspects of biomedicine are welcome. Using a process of rigorous yet rapid review of submitted manuscripts, findings of high scientific and medical interest are published with a minimum delay.