{"title":"Assessing school evacuation movement characteristics: Children and adolescents speed and flow over stairs and through exit doorways","authors":"Javad Hashempour, Babak Bahrani, Bryan Hoskins, Sohaib Abujayyab","doi":"10.1002/fam.3209","DOIUrl":null,"url":null,"abstract":"<p>The available theories of evacuation movements are primarily founded on data gathered from adults, making them potentially unsuitable for children, especially in schools. Consequently, it is necessary to undertake further research to collect data on how children move during evacuations to understand their unique characteristics and disparities compared to adults. In this context, this paper aimed to explore the movement of school children and adolescents as they moved over stairs and through exit doorways during evacuations. The evacuation drill involved 295 school children and adolescents, whose behavior was closely monitored using a series of cameras. During the drill, their movement patterns, including flow and speed, were analyzed over stairs and through doorways. The observations revealed that children exhibited frequent interactions and contact with one another, unlike adults, who tend to maintain personal space. The findings of this study indicated that the average traveling speed over stairs was comparable to previous research, although female adolescents had a lower average speed compared to other groups. The speed and flow of participants passing through doorways were found to vary depending on their age and differed from estimates based on adult data. This study highlights that existing evacuation models fall short of adequately accounting for the dynamics of children, indicating the need for further research to improve the generalizability of evacuation models.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"48 6","pages":"617-631"},"PeriodicalIF":2.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire and Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fam.3209","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The available theories of evacuation movements are primarily founded on data gathered from adults, making them potentially unsuitable for children, especially in schools. Consequently, it is necessary to undertake further research to collect data on how children move during evacuations to understand their unique characteristics and disparities compared to adults. In this context, this paper aimed to explore the movement of school children and adolescents as they moved over stairs and through exit doorways during evacuations. The evacuation drill involved 295 school children and adolescents, whose behavior was closely monitored using a series of cameras. During the drill, their movement patterns, including flow and speed, were analyzed over stairs and through doorways. The observations revealed that children exhibited frequent interactions and contact with one another, unlike adults, who tend to maintain personal space. The findings of this study indicated that the average traveling speed over stairs was comparable to previous research, although female adolescents had a lower average speed compared to other groups. The speed and flow of participants passing through doorways were found to vary depending on their age and differed from estimates based on adult data. This study highlights that existing evacuation models fall short of adequately accounting for the dynamics of children, indicating the need for further research to improve the generalizability of evacuation models.
期刊介绍:
Fire and Materials is an international journal for scientific and technological communications directed at the fire properties of materials and the products into which they are made. This covers all aspects of the polymer field and the end uses where polymers find application; the important developments in the fields of natural products - wood and cellulosics; non-polymeric materials - metals and ceramics; as well as the chemistry and industrial applications of fire retardant chemicals.
Contributions will be particularly welcomed on heat release; properties of combustion products - smoke opacity, toxicity and corrosivity; modelling and testing.