{"title":"An investigation of the immune epitope properties of adeno-associated virus capsid-derived peptides among hemophilia patients","authors":"Li Liu, Bingqi Xu, Lingling Chen, Jia Liu, Wei Liu, Feng Xue, Sizhou Feng, Erlie Jiang, Mingzhe Han, Wenwei Shao, Lei Zhang, Xiaolei Pei","doi":"10.1016/j.omtm.2024.101245","DOIUrl":null,"url":null,"abstract":"Adeno-associated virus (AAV) is an optimal gene vector for monogenic disorders. However, neutralizing antibodies (Nabs) against AAV hinder its widespread application in gene therapy. In this study, we biosynthesized peptides recognized by the binding antibodies (Babs) from the sera containing high Nab titers against AAV2. We established four immunological methods to detect immune epitopes of the AAV2-derived peptides, including a Bab assay, Nab assay, B cell receptor (BCR) detecting assay, and immunoglobin-producing B cell enzyme-linked immunosorbent spot (B cell ELISpot) assay. Correlations among the epitopes determined by these four methods were analyzed using the serum samples and peripheral blood mononuclear cells from 89 patients with hemophilia A/B. As decoys, the peptides’ ability to block the Nab of AAV2 particles was assessed using AAV transduction models both and . Overall, we provide insights into AAV2-capsid-derived peptide immune epitopes, involving the Nab, Bab, BCR, and B cell ELISpot assays, offering alternative immunological evaluation approaches and strategies to overcome Nab barriers in AAV-mediated gene therapy.","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy-Methods & Clinical Development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtm.2024.101245","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Adeno-associated virus (AAV) is an optimal gene vector for monogenic disorders. However, neutralizing antibodies (Nabs) against AAV hinder its widespread application in gene therapy. In this study, we biosynthesized peptides recognized by the binding antibodies (Babs) from the sera containing high Nab titers against AAV2. We established four immunological methods to detect immune epitopes of the AAV2-derived peptides, including a Bab assay, Nab assay, B cell receptor (BCR) detecting assay, and immunoglobin-producing B cell enzyme-linked immunosorbent spot (B cell ELISpot) assay. Correlations among the epitopes determined by these four methods were analyzed using the serum samples and peripheral blood mononuclear cells from 89 patients with hemophilia A/B. As decoys, the peptides’ ability to block the Nab of AAV2 particles was assessed using AAV transduction models both and . Overall, we provide insights into AAV2-capsid-derived peptide immune epitopes, involving the Nab, Bab, BCR, and B cell ELISpot assays, offering alternative immunological evaluation approaches and strategies to overcome Nab barriers in AAV-mediated gene therapy.
期刊介绍:
The aim of Molecular Therapy—Methods & Clinical Development is to build upon the success of Molecular Therapy in publishing important peer-reviewed methods and procedures, as well as translational advances in the broad array of fields under the molecular therapy umbrella.
Topics of particular interest within the journal''s scope include:
Gene vector engineering and production,
Methods for targeted genome editing and engineering,
Methods and technology development for cell reprogramming and directed differentiation of pluripotent cells,
Methods for gene and cell vector delivery,
Development of biomaterials and nanoparticles for applications in gene and cell therapy and regenerative medicine,
Analysis of gene and cell vector biodistribution and tracking,
Pharmacology/toxicology studies of new and next-generation vectors,
Methods for cell isolation, engineering, culture, expansion, and transplantation,
Cell processing, storage, and banking for therapeutic application,
Preclinical and QC/QA assay development,
Translational and clinical scale-up and Good Manufacturing procedures and process development,
Clinical protocol development,
Computational and bioinformatic methods for analysis, modeling, or visualization of biological data,
Negotiating the regulatory approval process and obtaining such approval for clinical trials.