{"title":"Comparison of Two Numerical Models of Convection in the Earth’s Mantle","authors":"V. V. Chervov, G. G. Chernykh, I. B. Palymskiy","doi":"10.1134/S1810232824010041","DOIUrl":null,"url":null,"abstract":"<p>The three-dimensional convection in the Earth’s mantle is studied with a well-known mathematical model, which includes the Navier–Stokes equations in the Oberbeck–Boussinesq and geodynamic approximations. Two numerical models of convection are considered. The first is based on the implicit finite-difference schemes of splitting over spatial variables with correction of pressure. The second numerical model is based on the spectral difference method. The numerical models constructed were compared on model problems of convection in a rectangular parallelepiped in a liquid with constant viscosity, corresponding to the convection in the entire mantle of the Earth [1]. The calculation results are in good agreement with the test results.</p>","PeriodicalId":627,"journal":{"name":"Journal of Engineering Thermophysics","volume":"33 1","pages":"29 - 38"},"PeriodicalIF":1.3000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1810232824010041","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The three-dimensional convection in the Earth’s mantle is studied with a well-known mathematical model, which includes the Navier–Stokes equations in the Oberbeck–Boussinesq and geodynamic approximations. Two numerical models of convection are considered. The first is based on the implicit finite-difference schemes of splitting over spatial variables with correction of pressure. The second numerical model is based on the spectral difference method. The numerical models constructed were compared on model problems of convection in a rectangular parallelepiped in a liquid with constant viscosity, corresponding to the convection in the entire mantle of the Earth [1]. The calculation results are in good agreement with the test results.
期刊介绍:
Journal of Engineering Thermophysics is an international peer reviewed journal that publishes original articles. The journal welcomes original articles on thermophysics from all countries in the English language. The journal focuses on experimental work, theory, analysis, and computational studies for better understanding of engineering and environmental aspects of thermophysics. The editorial board encourages the authors to submit papers with emphasis on new scientific aspects in experimental and visualization techniques, mathematical models of thermophysical process, energy, and environmental applications. Journal of Engineering Thermophysics covers all subject matter related to thermophysics, including heat and mass transfer, multiphase flow, conduction, radiation, combustion, thermo-gas dynamics, rarefied gas flow, environmental protection in power engineering, and many others.