Effects of Thermal and Chemical Nonequilibrium on Response of Charring Ablative Materials

IF 1.1 4区 工程技术 Q4 ENGINEERING, MECHANICAL Journal of Thermophysics and Heat Transfer Pub Date : 2024-04-03 DOI:10.2514/1.t6786
Volkan Coskun, Cuneyt Sert
{"title":"Effects of Thermal and Chemical Nonequilibrium on Response of Charring Ablative Materials","authors":"Volkan Coskun, Cuneyt Sert","doi":"10.2514/1.t6786","DOIUrl":null,"url":null,"abstract":"<p>A material response solver that predicts the response of charring ablative materials under different degrees of physical modeling complexity is developed. The solver provides a versatile environment for engineering analyses and incorporates a third-party library for the evaluation of thermodynamic/transport properties of pyrolysis gas mixture and chemical kinetics, if necessary. Thermal nonequilibrium between the solid and the gas phases is considered using the two-equation model. A novel reactor network approach is used for modeling pyrolysis gas flow inside the porous ablative material, allowing simulations with various gas compositions and reaction mechanisms. Effects of chemical and thermal nonequilibrium and influences of the porosity and permeability of the porous structure on the response of charring ablative materials are explored. It is observed that higher porosity and smaller permeability values induce local thermal equilibrium, and chemical reactions increase the temperature differences between the phases.</p>","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermophysics and Heat Transfer","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.t6786","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A material response solver that predicts the response of charring ablative materials under different degrees of physical modeling complexity is developed. The solver provides a versatile environment for engineering analyses and incorporates a third-party library for the evaluation of thermodynamic/transport properties of pyrolysis gas mixture and chemical kinetics, if necessary. Thermal nonequilibrium between the solid and the gas phases is considered using the two-equation model. A novel reactor network approach is used for modeling pyrolysis gas flow inside the porous ablative material, allowing simulations with various gas compositions and reaction mechanisms. Effects of chemical and thermal nonequilibrium and influences of the porosity and permeability of the porous structure on the response of charring ablative materials are explored. It is observed that higher porosity and smaller permeability values induce local thermal equilibrium, and chemical reactions increase the temperature differences between the phases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热平衡和化学非平衡对烧焦烧蚀材料响应的影响
开发了一种材料响应求解器,可预测不同物理建模复杂度下烧焦烧蚀材料的响应。该求解器为工程分析提供了一个多功能环境,并在必要时纳入了一个第三方库,用于评估热解气体混合物的热力学/传输特性和化学动力学。使用双方程模型考虑了固相和气相之间的热不平衡。在模拟多孔烧蚀材料内部的热解气体流动时,采用了一种新颖的反应器网络方法,可以模拟各种气体成分和反应机制。研究探讨了化学和热非平衡的影响以及多孔结构的孔隙率和渗透性对炭化烧蚀材料反应的影响。研究发现,较高的孔隙率和较小的渗透率值会导致局部热平衡,而化学反应则会增加相间的温差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Thermophysics and Heat Transfer
Journal of Thermophysics and Heat Transfer 工程技术-工程:机械
CiteScore
3.50
自引率
19.00%
发文量
95
审稿时长
3 months
期刊介绍: This Journal is devoted to the advancement of the science and technology of thermophysics and heat transfer through the dissemination of original research papers disclosing new technical knowledge and exploratory developments and applications based on new knowledge. The Journal publishes qualified papers that deal with the properties and mechanisms involved in thermal energy transfer and storage in gases, liquids, and solids or combinations thereof. These studies include aerothermodynamics; conductive, convective, radiative, and multiphase modes of heat transfer; micro- and nano-scale heat transfer; nonintrusive diagnostics; numerical and experimental techniques; plasma excitation and flow interactions; thermal systems; and thermophysical properties. Papers that review recent research developments in any of the prior topics are also solicited.
期刊最新文献
Performance Estimation of a Capillary-Fed Evaporative Microthruster Transient Response Analysis in Spacecraft Thermal Protection Structures Under Periodic Thermal Disturbances Characteristic Vibrational and Rotational Relaxation Times for Air Species from First-Principles Calculations Magnetohydrodynamics Flow of Hybrid Nanofluid Rotating in Annulus Through Two Coaxial Cylinders Direct Validation of Approximate Models for Molecular Vibrational Transition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1