Comparative Analysis of the Gelsemium Alkaloids Metabolism in Human, Pig, Goat, and Rat Liver Microsomes

IF 2.1 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Current drug metabolism Pub Date : 2024-04-04 DOI:10.2174/0113892002298633240322071126
Yi-Rong Wang, Meng-Ting Zuo, Wen-Bo Xu, Zhao-Ying Liu
{"title":"Comparative Analysis of the Gelsemium Alkaloids Metabolism in Human, Pig, Goat, and Rat Liver Microsomes","authors":"Yi-Rong Wang, Meng-Ting Zuo, Wen-Bo Xu, Zhao-Ying Liu","doi":"10.2174/0113892002298633240322071126","DOIUrl":null,"url":null,"abstract":"Aim: The aim of this study was to investigate the metabolism of Gelsemium elegans in human, pig, goat and rat liver microsomes and to elucidate the metabolic pathways and cleavage patterns of the Gelsemium alkaloids among different species. Methods: A human, goat, pig and rat liver microparticles were incubated in vitro. After incubating at 37°C for 1 hour and centrifuging, the processed samples were detected by HPLC/Qq-TOFMS was used to detect alcohol extract of Gelsemium elegans and its metabolites. Results: Forty-six natural products were characterized from alcohol extract of Gelsemium elegans and 13 metabolites were identified. These 13 metabolites belong to the gelsemine, koumine, gelsedine, humantenine, yohimbane, and sarpagine classes of alkaloids. The metabolic pathways included oxidation, demethylation and dehydrogenation. After preliminary identification, the metabolites detected in the four species were different. All 13 metabolites were detected in pig and rat microsomes, but no oxidative metabolites of Gelsedine-type alkaloids were detected in goat and human microsomes. Conclusion: In this study, Gelsemium elegans metabolic patterns in different species are clarified and the in vitro metabolism of Gelsemium elegans is investigated. It is of great significance for its clinical development and rational application. result: 46 natural products were characterized from alcohol extract of Gelsemium elegan and 13 metabolites were identified. The metabolic pathways included oxidation, demethylation and dehydrogenation. After preliminary identification, the metabolites detected in the four species were different. all 13 metabolites were detected in pig and rat, but no oxidative metabolites of Gelsedine-type alkaloids were detected in goat and human.","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":"107 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892002298633240322071126","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: The aim of this study was to investigate the metabolism of Gelsemium elegans in human, pig, goat and rat liver microsomes and to elucidate the metabolic pathways and cleavage patterns of the Gelsemium alkaloids among different species. Methods: A human, goat, pig and rat liver microparticles were incubated in vitro. After incubating at 37°C for 1 hour and centrifuging, the processed samples were detected by HPLC/Qq-TOFMS was used to detect alcohol extract of Gelsemium elegans and its metabolites. Results: Forty-six natural products were characterized from alcohol extract of Gelsemium elegans and 13 metabolites were identified. These 13 metabolites belong to the gelsemine, koumine, gelsedine, humantenine, yohimbane, and sarpagine classes of alkaloids. The metabolic pathways included oxidation, demethylation and dehydrogenation. After preliminary identification, the metabolites detected in the four species were different. All 13 metabolites were detected in pig and rat microsomes, but no oxidative metabolites of Gelsedine-type alkaloids were detected in goat and human microsomes. Conclusion: In this study, Gelsemium elegans metabolic patterns in different species are clarified and the in vitro metabolism of Gelsemium elegans is investigated. It is of great significance for its clinical development and rational application. result: 46 natural products were characterized from alcohol extract of Gelsemium elegan and 13 metabolites were identified. The metabolic pathways included oxidation, demethylation and dehydrogenation. After preliminary identification, the metabolites detected in the four species were different. all 13 metabolites were detected in pig and rat, but no oxidative metabolites of Gelsedine-type alkaloids were detected in goat and human.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人、猪、山羊和大鼠肝脏微粒体中的格列齐特生物碱代谢对比分析
目的:本研究旨在调查人、猪、山羊和大鼠肝脏微粒体中的格尔木代谢,并阐明不同物种间格尔木生物碱的代谢途径和裂解模式。研究方法体外培养人、山羊、猪和大鼠肝脏微粒体。在 37°C 下孵育 1 小时并离心后,用 HPLC/Qq-TOFMS 对处理后的样品进行检测,以检测 Gelsemium elegans 的醇提取物及其代谢物。结果鉴定了46种 elegans Gelsemium 酒精提取物的天然产物,并确定了13种代谢物。这 13 种代谢物属于 Gelsemine、Koumine、Gelsedine、Humantenine、Yohimbane 和 sarpagine 类生物碱。代谢途径包括氧化、去甲基化和脱氢。经过初步鉴定,在四个物种中检测到的代谢物各不相同。在猪和大鼠的微粒体中检测到了全部 13 种代谢物,但在山羊和人的微粒体中没有检测到 Gelsedine 类生物碱的氧化代谢物。结论本研究阐明了不同物种中的凝胶苣苔代谢模式,并对凝胶苣苔的体外代谢进行了研究。研究结果:从大叶黄杨的醇提取物中鉴定出 46 种天然产物,并确定了 13 种代谢物。代谢途径包括氧化、去甲基化和脱氢。经过初步鉴定,在四个物种中检测到的代谢物是不同的。在猪和大鼠中检测到了全部 13 种代谢物,但在山羊和人中没有检测到 Gelsedine 类生物碱的氧化代谢物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current drug metabolism
Current drug metabolism 医学-生化与分子生物学
CiteScore
4.30
自引率
4.30%
发文量
81
审稿时长
4-8 weeks
期刊介绍: Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism, pharmacokinetics, and drug disposition. The journal serves as an international forum for the publication of full-length/mini review, research articles and guest edited issues in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the most important developments. The journal covers the following general topic areas: pharmaceutics, pharmacokinetics, toxicology, and most importantly drug metabolism. More specifically, in vitro and in vivo drug metabolism of phase I and phase II enzymes or metabolic pathways; drug-drug interactions and enzyme kinetics; pharmacokinetics, pharmacokinetic-pharmacodynamic modeling, and toxicokinetics; interspecies differences in metabolism or pharmacokinetics, species scaling and extrapolations; drug transporters; target organ toxicity and interindividual variability in drug exposure-response; extrahepatic metabolism; bioactivation, reactive metabolites, and developments for the identification of drug metabolites. Preclinical and clinical reviews describing the drug metabolism and pharmacokinetics of marketed drugs or drug classes.
期刊最新文献
Application of UPLC-MS/MS to Study Cellular Pharmacokinetics of Seven Active Components of Cnidii Fructus Extracts. Drug Metabolizing Enzymes: An Exclusive Guide into Latest Research in Pharmaco-genetic Dynamics in Arab Countries. Unveiling the Interplay: Antioxidant Enzyme Polymorphisms and Oxidative Stress in Preterm Neonatal Renal and Hepatic Functions. Quality by Design Approach for the Development of Cariprazine Hydrochloride Loaded Lipid-Based Formulation for Brain Delivery via Intranasal Route. Ceftobiprole and Cefiderocol for Patients on Extracorporeal Membrane Oxygenation: The Role of Therapeutic Drug Monitoring.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1