An adaptive heavy ball method for ill-posed inverse problems

Qinian Jin, Qin Huang
{"title":"An adaptive heavy ball method for ill-posed inverse problems","authors":"Qinian Jin, Qin Huang","doi":"arxiv-2404.03218","DOIUrl":null,"url":null,"abstract":"In this paper we consider ill-posed inverse problems, both linear and\nnonlinear, by a heavy ball method in which a strongly convex regularization\nfunction is incorporated to detect the feature of the sought solution. We\ndevelop ideas on how to adaptively choose the step-sizes and the momentum\ncoefficients to achieve acceleration over the Landweber-type method. We then\nanalyze the method and establish its regularization property when it is\nterminated by the discrepancy principle. Various numerical results are reported\nwhich demonstrate the superior performance of our method over the\nLandweber-type method by reducing substantially the required number of\niterations and the computational time.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"92 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.03218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we consider ill-posed inverse problems, both linear and nonlinear, by a heavy ball method in which a strongly convex regularization function is incorporated to detect the feature of the sought solution. We develop ideas on how to adaptively choose the step-sizes and the momentum coefficients to achieve acceleration over the Landweber-type method. We then analyze the method and establish its regularization property when it is terminated by the discrepancy principle. Various numerical results are reported which demonstrate the superior performance of our method over the Landweber-type method by reducing substantially the required number of iterations and the computational time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种自适应重球方法,用于处理问题严重的逆问题
在本文中,我们采用重球方法来考虑线性和非线性反问题,该方法采用了强凸正则化函数来检测所求解的特征。我们提出了如何自适应地选择步长和动量系数,以实现比 Landweber 型方法更快的速度。然后,我们对该方法进行了分析,并确定了该方法在以差异原理为终结时的正则化特性。报告的各种数值结果表明,我们的方法大大减少了所需的迭代次数和计算时间,性能优于 Landweber 型方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of the SQP Method for Hyperbolic PDE-Constrained Optimization in Acoustic Full Waveform Inversion Detection of a piecewise linear crack with one incident wave Randomized quasi-Monte Carlo and Owen's boundary growth condition: A spectral analysis Energy stable gradient flow schemes for shape and topology optimization in Navier-Stokes flows Exponential time propagators for elastodynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1