{"title":"A New Adaptive Robust Modularized Semi-Supervised Community Detection Method Based on Non-negative Matrix Factorization","authors":"","doi":"10.1007/s11063-024-11588-y","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>The most extensively used tools for categorizing complicated networks are community detection methods. One of the most common methods for unsupervised and semi-supervised clustering is community detection based on Non-negative Matrix Factorization (NMF). Nonetheless, this approach encounters multiple challenges, including the lack of specificity for the data type and the decreased efficiency when errors occur in each cluster’s knowledge priority. As modularity is the basic and thorough criterion for evaluating and validating performance of community detection methods, this paper proposes a new approach for modularity-based community detection which is similar to symmetric NMF. The provided approach is a semi-supervised adaptive robust community detection model referred to as modularized robust semi-supervised adaptive symmetric NMF (MRASNMF). In this model, the modularity criterion has been successfully combined with the NMF model via a novel multi-view clustering method. Also, the tuning parameter is adjusted iteratively via an adaptive method. MRASNMF makes use of knowledge priority, modularity criterion, reinforcement of non-negative matrix factorization, and has iterative solution, as well. In this regard, the MRASNMF model was evaluated and validated using five real-world networks in comparison to existing semi-supervised community detection approaches. According to the findings of this study, the proposed strategy is most effective for all types of networks.</p>","PeriodicalId":51144,"journal":{"name":"Neural Processing Letters","volume":"239 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11063-024-11588-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The most extensively used tools for categorizing complicated networks are community detection methods. One of the most common methods for unsupervised and semi-supervised clustering is community detection based on Non-negative Matrix Factorization (NMF). Nonetheless, this approach encounters multiple challenges, including the lack of specificity for the data type and the decreased efficiency when errors occur in each cluster’s knowledge priority. As modularity is the basic and thorough criterion for evaluating and validating performance of community detection methods, this paper proposes a new approach for modularity-based community detection which is similar to symmetric NMF. The provided approach is a semi-supervised adaptive robust community detection model referred to as modularized robust semi-supervised adaptive symmetric NMF (MRASNMF). In this model, the modularity criterion has been successfully combined with the NMF model via a novel multi-view clustering method. Also, the tuning parameter is adjusted iteratively via an adaptive method. MRASNMF makes use of knowledge priority, modularity criterion, reinforcement of non-negative matrix factorization, and has iterative solution, as well. In this regard, the MRASNMF model was evaluated and validated using five real-world networks in comparison to existing semi-supervised community detection approaches. According to the findings of this study, the proposed strategy is most effective for all types of networks.
期刊介绍:
Neural Processing Letters is an international journal publishing research results and innovative ideas on all aspects of artificial neural networks. Coverage includes theoretical developments, biological models, new formal modes, learning, applications, software and hardware developments, and prospective researches.
The journal promotes fast exchange of information in the community of neural network researchers and users. The resurgence of interest in the field of artificial neural networks since the beginning of the 1980s is coupled to tremendous research activity in specialized or multidisciplinary groups. Research, however, is not possible without good communication between people and the exchange of information, especially in a field covering such different areas; fast communication is also a key aspect, and this is the reason for Neural Processing Letters