{"title":"Novel GCN Model Using Dense Connection and Attention Mechanism for Text Classification","authors":"Yinbin Peng, Wei Wu, Jiansi Ren, Xiang Yu","doi":"10.1007/s11063-024-11599-9","DOIUrl":null,"url":null,"abstract":"<p>Convolutional Neural Network (CNN) or Recurrent Neural Network (RNN) based text classification algorithms currently in use can successfully extract local textual features but disregard global data. Due to its ability to understand complex text structures and maintain global information, Graph Neural Network (GNN) has demonstrated considerable promise in text classification. However, most of the GNN text classification models in use presently are typically shallow, unable to capture long-distance node information and reflect the various scale features of the text (such as words, phrases, etc.). All of which will negatively impact the performance of the final classification. A novel Graph Convolutional Neural Network (GCN) with dense connections and an attention mechanism for text classification is proposed to address these constraints. By increasing the depth of GCN, the densely connected graph convolutional network (DC-GCN) gathers information about distant nodes. The DC-GCN multiplexes the small-scale features of shallow layers and produces different scale features through dense connections. To combine features and determine their relative importance, an attention mechanism is finally added. Experiment results on four benchmark datasets demonstrate that our model’s classification accuracy greatly outpaces that of the conventional deep learning text classification model. Our model performs exceptionally well when compared to other text categorization GCN algorithms.</p>","PeriodicalId":51144,"journal":{"name":"Neural Processing Letters","volume":"215 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11063-024-11599-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Convolutional Neural Network (CNN) or Recurrent Neural Network (RNN) based text classification algorithms currently in use can successfully extract local textual features but disregard global data. Due to its ability to understand complex text structures and maintain global information, Graph Neural Network (GNN) has demonstrated considerable promise in text classification. However, most of the GNN text classification models in use presently are typically shallow, unable to capture long-distance node information and reflect the various scale features of the text (such as words, phrases, etc.). All of which will negatively impact the performance of the final classification. A novel Graph Convolutional Neural Network (GCN) with dense connections and an attention mechanism for text classification is proposed to address these constraints. By increasing the depth of GCN, the densely connected graph convolutional network (DC-GCN) gathers information about distant nodes. The DC-GCN multiplexes the small-scale features of shallow layers and produces different scale features through dense connections. To combine features and determine their relative importance, an attention mechanism is finally added. Experiment results on four benchmark datasets demonstrate that our model’s classification accuracy greatly outpaces that of the conventional deep learning text classification model. Our model performs exceptionally well when compared to other text categorization GCN algorithms.
期刊介绍:
Neural Processing Letters is an international journal publishing research results and innovative ideas on all aspects of artificial neural networks. Coverage includes theoretical developments, biological models, new formal modes, learning, applications, software and hardware developments, and prospective researches.
The journal promotes fast exchange of information in the community of neural network researchers and users. The resurgence of interest in the field of artificial neural networks since the beginning of the 1980s is coupled to tremendous research activity in specialized or multidisciplinary groups. Research, however, is not possible without good communication between people and the exchange of information, especially in a field covering such different areas; fast communication is also a key aspect, and this is the reason for Neural Processing Letters