{"title":"Solubility Determination and Model Evaluation of Triethylamine Hydrochloride in Three Binary Mixed Solvents","authors":"Zhe Zhang, Fang Zong, Junfeng Teng, Lili Wang, Xin Jin, Shuguang Xiang","doi":"10.1007/s10953-024-01379-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the saturated solubility of triethylamine hydrochloride (TEA·HCl) was determined using the static method in binary mixed solvents ((1-Butanol, dimethyl sulfoxide (DMSO), 1-Octanol) + dimethyl carbonate (DMC)) at temperatures ranging from 298.15 to 333.15 K and ambient pressure (<i>p</i> = 0.1 MPa). Quantum chemistry calculations were performed to analyze the dissolution process among different solvents. Results showed that the obtained solubility data correlated well with five equations. Evaluation of solubility data was carried out by mean Average Relative Deviation (ARD) and Root-Mean-Square Deviation (RMSD). The findings indicated that the modified Apelblat model demonstrated the strongest correlation among the five models. The ARD and 10<sup>4 </sup>RMSD were 1.39% and 2.61, respectively. Subsequently, the Gibbs energy, enthalpy, and entropy of TEA·HCl dissolved in each mixed solvent can be determined by applying van’t Hoff equations, revealing an endothermic and entropy-driven dissolution process. The experimental results indicated that the solubility of TEA·HCl in the selected binary solvents increased with the increasing temperature and decreased with the increasing molar fraction of DMC. The solubility sequence in various systems was explained in terms of the solvation free energy. The solubility values, model parameters, and thermodynamic properties of TEA·HCl in different mixed solvents can be obtained through experimentation, providing foundational support for its preparation, crystallization process, and further theoretical research.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10953-024-01379-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the saturated solubility of triethylamine hydrochloride (TEA·HCl) was determined using the static method in binary mixed solvents ((1-Butanol, dimethyl sulfoxide (DMSO), 1-Octanol) + dimethyl carbonate (DMC)) at temperatures ranging from 298.15 to 333.15 K and ambient pressure (p = 0.1 MPa). Quantum chemistry calculations were performed to analyze the dissolution process among different solvents. Results showed that the obtained solubility data correlated well with five equations. Evaluation of solubility data was carried out by mean Average Relative Deviation (ARD) and Root-Mean-Square Deviation (RMSD). The findings indicated that the modified Apelblat model demonstrated the strongest correlation among the five models. The ARD and 104 RMSD were 1.39% and 2.61, respectively. Subsequently, the Gibbs energy, enthalpy, and entropy of TEA·HCl dissolved in each mixed solvent can be determined by applying van’t Hoff equations, revealing an endothermic and entropy-driven dissolution process. The experimental results indicated that the solubility of TEA·HCl in the selected binary solvents increased with the increasing temperature and decreased with the increasing molar fraction of DMC. The solubility sequence in various systems was explained in terms of the solvation free energy. The solubility values, model parameters, and thermodynamic properties of TEA·HCl in different mixed solvents can be obtained through experimentation, providing foundational support for its preparation, crystallization process, and further theoretical research.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.