Lipid exchange of apolipoprotein A‐I amyloidogenic variants in reconstituted high‐density lipoprotein with artificial membranes

IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Protein Science Pub Date : 2024-04-12 DOI:10.1002/pro.4987
Yubexi Correa, Mathilde Ravel, Marie Imbert, Sarah Waldie, Luke Clifton, Ann Terry, Felix Roosen‐Runge, Jens O. Lagerstedt, Michael Moir, Tamim Darwish, Marité Cárdenas, Rita Del Giudice
{"title":"Lipid exchange of apolipoprotein A‐I amyloidogenic variants in reconstituted high‐density lipoprotein with artificial membranes","authors":"Yubexi Correa, Mathilde Ravel, Marie Imbert, Sarah Waldie, Luke Clifton, Ann Terry, Felix Roosen‐Runge, Jens O. Lagerstedt, Michael Moir, Tamim Darwish, Marité Cárdenas, Rita Del Giudice","doi":"10.1002/pro.4987","DOIUrl":null,"url":null,"abstract":"High‐density lipoproteins (HDLs) are responsible for removing cholesterol from arterial walls, through a process known as reverse cholesterol transport. The main protein in HDL, apolipoprotein A‐I (ApoA‐I), is essential to this process, and changes in its sequence significantly alter HDL structure and functions. ApoA‐I amyloidogenic variants, associated with a particular hereditary degenerative disease, are particularly effective at facilitating cholesterol removal, thus protecting carriers from cardiovascular disease. Thus, it is conceivable that reconstituted HDL (rHDL) formulations containing ApoA‐I proteins with functional/structural features similar to those of amyloidogenic variants hold potential as a promising therapeutic approach. Here we explored the effect of protein cargo and lipid composition on the function of rHDL containing one of the ApoA‐I amyloidogenic variants G26R or L174S by Fourier transformed infrared spectroscopy and neutron reflectometry. Moreover, small‐angle x‐ray scattering uncovered the structural and functional differences between rHDL particles, which could help to comprehend higher cholesterol efflux activity and apparent lower phospholipid (PL) affinity. Our findings indicate distinct trends in lipid exchange (removal vs. deposition) capacities of various rHDL particles, with the rHDL containing the ApoA‐I amyloidogenic variants showing a markedly lower ability to remove lipids from artificial membranes compared to the rHDL containing the native protein. This effect strongly depends on the level of PL unsaturation and on the particles' ultrastructure. The study highlights the importance of the protein cargo, along with lipid composition, in shaping rHDL structure, contributing to our understanding of lipid–protein interactions and their behavior.","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.4987","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

High‐density lipoproteins (HDLs) are responsible for removing cholesterol from arterial walls, through a process known as reverse cholesterol transport. The main protein in HDL, apolipoprotein A‐I (ApoA‐I), is essential to this process, and changes in its sequence significantly alter HDL structure and functions. ApoA‐I amyloidogenic variants, associated with a particular hereditary degenerative disease, are particularly effective at facilitating cholesterol removal, thus protecting carriers from cardiovascular disease. Thus, it is conceivable that reconstituted HDL (rHDL) formulations containing ApoA‐I proteins with functional/structural features similar to those of amyloidogenic variants hold potential as a promising therapeutic approach. Here we explored the effect of protein cargo and lipid composition on the function of rHDL containing one of the ApoA‐I amyloidogenic variants G26R or L174S by Fourier transformed infrared spectroscopy and neutron reflectometry. Moreover, small‐angle x‐ray scattering uncovered the structural and functional differences between rHDL particles, which could help to comprehend higher cholesterol efflux activity and apparent lower phospholipid (PL) affinity. Our findings indicate distinct trends in lipid exchange (removal vs. deposition) capacities of various rHDL particles, with the rHDL containing the ApoA‐I amyloidogenic variants showing a markedly lower ability to remove lipids from artificial membranes compared to the rHDL containing the native protein. This effect strongly depends on the level of PL unsaturation and on the particles' ultrastructure. The study highlights the importance of the protein cargo, along with lipid composition, in shaping rHDL structure, contributing to our understanding of lipid–protein interactions and their behavior.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工膜重组高密度脂蛋白中脂蛋白 A-I 淀粉样变体的脂质交换
高密度脂蛋白(HDL)负责通过一种被称为胆固醇逆向运输的过程将胆固醇从动脉壁中清除。高密度脂蛋白中的主要蛋白质载脂蛋白 A-I(ApoA-I)对这一过程至关重要,其序列的变化会显著改变高密度脂蛋白的结构和功能。载脂蛋白 A-I 淀粉样变体与一种特殊的遗传性退行性疾病有关,在促进胆固醇清除方面特别有效,从而保护携带者免受心血管疾病的侵害。因此,可以想象,含有载脂蛋白 I 蛋白的重组高密度脂蛋白(rHDL)制剂具有与淀粉样蛋白变体相似的功能/结构特征,有望成为一种有前景的治疗方法。在此,我们通过傅立叶变换红外光谱和中子反射仪,探讨了蛋白质载体和脂质组成对含有一种载脂蛋白A-I淀粉样蛋白变体G26R或L174S的rHDL功能的影响。此外,小角 X 射线散射揭示了 rHDL 颗粒之间的结构和功能差异,这有助于理解更高的胆固醇外排活性和明显较低的磷脂(PL)亲和力。我们的研究结果表明,不同的rHDL颗粒在脂质交换(清除与沉积)能力方面有不同的趋势,与含有原生蛋白的rHDL相比,含有ApoA-I淀粉样蛋白变体的rHDL从人工膜上清除脂质的能力明显较低。这种效应在很大程度上取决于聚乳酸的不饱和程度和颗粒的超微结构。这项研究强调了蛋白质货物以及脂质成分在塑造 rHDL 结构方面的重要性,有助于我们了解脂质与蛋白质之间的相互作用及其行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Protein Science
Protein Science 生物-生化与分子生物学
CiteScore
12.40
自引率
1.20%
发文量
246
审稿时长
1 months
期刊介绍: Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution. Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics. The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication. Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).
期刊最新文献
Biophysical characterization of RelA-p52 NF-κB dimer-A link between the canonical and the non-canonical NF-κB pathway. Correction to "Award Winners and Abstracts of the 30th Anniversary Symposium of the Protein Society, Baltimore, MD, July 16-19, 2016". On the humanization of VHHs: Prospective case studies, experimental and computational characterization of structural determinants for functionality. A coarse-grained model for disordered and multi-domain proteins. dUTP pyrophosphatases from hyperthermophilic eubacterium and archaeon: Structural and functional examinations on the suitability for PCR application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1