The base flipping of A-DNA—a molecular dynamic simulation study

IF 2.1 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Structural Chemistry Pub Date : 2024-04-01 DOI:10.1007/s11224-024-02299-0
Shudong Wang, Xuan Zheng, Jingjie Wu
{"title":"The base flipping of A-DNA—a molecular dynamic simulation study","authors":"Shudong Wang,&nbsp;Xuan Zheng,&nbsp;Jingjie Wu","doi":"10.1007/s11224-024-02299-0","DOIUrl":null,"url":null,"abstract":"<div><p>Due to different solvent conditions, double helix DNA exists in various conformations, such as B-DNA, A-DNA, C-DNA, and Z-DNA. Studies have found that A-DNA is present in complexes with proteins and has an important biological role in the context of cellular defense mechanisms under harsh conditions. In this study, the well-tempered meta-dynamics (WTM-eABF) were used to explore the free energy barriers for base flipping of the four natural bases, adenine, guanine, cytosine, and thymine, in both A-form and B-form DNA duplex. The results show that the free energy barriers for base flipping were lower in A-DNA than that in B-DNA for all of the four natural bases. We analyzed the factors that may affect base flipping, such as π-π stacking, SASA, H-bonding, and conformational changes, and concluded that conformational changes and π-π stacking are the most important factors affecting base flipping.</p></div>","PeriodicalId":780,"journal":{"name":"Structural Chemistry","volume":"35 5","pages":"1649 - 1656"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11224-024-02299-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to different solvent conditions, double helix DNA exists in various conformations, such as B-DNA, A-DNA, C-DNA, and Z-DNA. Studies have found that A-DNA is present in complexes with proteins and has an important biological role in the context of cellular defense mechanisms under harsh conditions. In this study, the well-tempered meta-dynamics (WTM-eABF) were used to explore the free energy barriers for base flipping of the four natural bases, adenine, guanine, cytosine, and thymine, in both A-form and B-form DNA duplex. The results show that the free energy barriers for base flipping were lower in A-DNA than that in B-DNA for all of the four natural bases. We analyzed the factors that may affect base flipping, such as π-π stacking, SASA, H-bonding, and conformational changes, and concluded that conformational changes and π-π stacking are the most important factors affecting base flipping.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A-DNA 的碱基翻转--分子动态模拟研究
由于溶剂条件不同,双螺旋 DNA 存在多种构象,如 B-DNA、A-DNA、C-DNA 和 Z-DNA。研究发现,A-DNA 存在于与蛋白质的复合物中,在严酷条件下的细胞防御机制中具有重要的生物学作用。在本研究中,我们使用好脾气元动力学(WTM-eABF)探讨了腺嘌呤、鸟嘌呤、胞嘧啶和胸腺嘧啶这四种天然碱基在 A 型和 B 型 DNA 双链中发生碱基翻转的自由能垒。结果表明,对于所有四种天然碱基,A-DNA 中碱基翻转的自由能垒均低于 B-DNA 中的自由能垒。我们分析了可能影响碱基翻转的因素,如π-π堆积、SASA、H 键和构象变化,得出结论:构象变化和π-π堆积是影响碱基翻转的最重要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Structural Chemistry
Structural Chemistry 化学-化学综合
CiteScore
3.80
自引率
11.80%
发文量
227
审稿时长
3.7 months
期刊介绍: Structural Chemistry is an international forum for the publication of peer-reviewed original research papers that cover the condensed and gaseous states of matter and involve numerous techniques for the determination of structure and energetics, their results, and the conclusions derived from these studies. The journal overcomes the unnatural separation in the current literature among the areas of structure determination, energetics, and applications, as well as builds a bridge to other chemical disciplines. Ist comprehensive coverage encompasses broad discussion of results, observation of relationships among various properties, and the description and application of structure and energy information in all domains of chemistry. We welcome the broadest range of accounts of research in structural chemistry involving the discussion of methodologies and structures,experimental, theoretical, and computational, and their combinations. We encourage discussions of structural information collected for their chemicaland biological significance.
期刊最新文献
Stabilization of cyclo-N6 by insertion into [18]-annulene: a DFT study Theoretical study of novel antipyrine derivatives as promising corrosion inhibitors for mild steel in an acidic environment Density functional theory studies the interaction of neopentane with functionalized porous graphene An analogous Twisted Little Tale on the significance of unusual infrared frequencies Topological relations between crystal structures: a route to predicting inorganic materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1