Unsupervised machine learning for supercooled liquids

Yunrui Qiu, Inhyuk Jang, Xuhui Huang, Arun Yethiraj
{"title":"Unsupervised machine learning for supercooled liquids","authors":"Yunrui Qiu, Inhyuk Jang, Xuhui Huang, Arun Yethiraj","doi":"arxiv-2404.04473","DOIUrl":null,"url":null,"abstract":"Unraveling dynamic heterogeneity in supercooled liquids from structural\ninformation is one of the grand challenges of physics. In this work, we\nintroduce an unsupervised machine learning approach based on a time-lagged\nautoencoder (TAE) to elucidate the effect of structural features on the\nlong-term dynamics of supercooled liquids. The TAE uses an autoencoder to\nreconstruct features at time $t + \\Delta t$ from input features at time $t$ for\nindividual particles, and the resulting latent space variables are considered\nas order parameters. In the Kob-Andersen system, with a $\\Delta t$ about a\nthousand times smaller than the relaxation time, the TAE order parameter\nexhibits a remarkable correlation with the long-time propensity. We find that\nshort-range radial features correlate with the short-time dynamics, and\nmedium-range radial features correlate with the long-time dynamics. This shows\nthat fluctuations of medium-range structural features contain sufficient\ninformation about the long-time dynamic heterogeneity, consistent with some\ntheoretical predictions.","PeriodicalId":501066,"journal":{"name":"arXiv - PHYS - Disordered Systems and Neural Networks","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.04473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Unraveling dynamic heterogeneity in supercooled liquids from structural information is one of the grand challenges of physics. In this work, we introduce an unsupervised machine learning approach based on a time-lagged autoencoder (TAE) to elucidate the effect of structural features on the long-term dynamics of supercooled liquids. The TAE uses an autoencoder to reconstruct features at time $t + \Delta t$ from input features at time $t$ for individual particles, and the resulting latent space variables are considered as order parameters. In the Kob-Andersen system, with a $\Delta t$ about a thousand times smaller than the relaxation time, the TAE order parameter exhibits a remarkable correlation with the long-time propensity. We find that short-range radial features correlate with the short-time dynamics, and medium-range radial features correlate with the long-time dynamics. This shows that fluctuations of medium-range structural features contain sufficient information about the long-time dynamic heterogeneity, consistent with some theoretical predictions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对过冷液体的无监督机器学习
从结构信息中揭示过冷液体的动态异质性是物理学的重大挑战之一。在这项工作中,我们引入了一种基于时滞自动编码器(TAE)的无监督机器学习方法,以阐明结构特征对过冷液体长期动力学的影响。TAE 使用自动编码器从单个粒子在时间 $t$ 的输入特征重建时间 $t + \Delta t$ 的特征,并将由此产生的潜在空间变量视为阶次参数。在 Kob-Andersen 系统中,当 $\Delta t$ 小于弛豫时间约几千倍时,TAE 的阶次参数与长时倾向有显著的相关性。我们发现短程径向特征与短时动力学相关,而中程径向特征与长时动力学相关。这表明中程结构特征的波动包含了关于长时动态异质性的足够信息,这与某些理论预测是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Analysis of the OpenAI O1-Preview Model in Solving Random K-SAT Problem: Does the LLM Solve the Problem Itself or Call an External SAT Solver? Trade-off relations between quantum coherence and measure of many-body localization Soft modes in vector spin glass models on sparse random graphs Boolean mean field spin glass model: rigorous results Generalized hetero-associative neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1