Anti-plane waves in a liquid-loaded piezo-flexo-electric layered model with interface energy

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Mathematics and Mechanics of Solids Pub Date : 2024-04-15 DOI:10.1177/10812865241239600
Sonam Singh, Abhishek K Singh
{"title":"Anti-plane waves in a liquid-loaded piezo-flexo-electric layered model with interface energy","authors":"Sonam Singh, Abhishek K Singh","doi":"10.1177/10812865241239600","DOIUrl":null,"url":null,"abstract":"The basic design of a Love wave (LW) bio-sensor contains the loading of a viscoelastic liquid on top of a layered structure with distinct viscoelastic properties. Changes in the characteristics of the propagating acoustic wave caused by biochemical interactions at the sensing area can be detected at the output Inter digital transducer (IDT). The propagation of the anti-plane (AP) wave is discussed in this work in a layered structure of piezo-flexo-electric (PFE) layer bonded with a PFE half-space having a soft reinforced layer at the interface. The free surface of the PFE layer is loaded with viscous liquid. The viscosity of the loaded liquid introduces losses and results in the damping of the wave. For the formulation of the problem with interface energy, the Gurtin–Murdoch approach is used. Using suitable conditions, a dispersion relation for propagating waves is derived in complex form. On separating the dispersion relation in real and non-real parts, the expressions relating the phase and damp velocities with wave number are derived. The obtained theoretical results are portrayed for the numerical data of PFE materials and distinct data of the interface layer. The obtained results are validated with pre-existing literature.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"144 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10812865241239600","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The basic design of a Love wave (LW) bio-sensor contains the loading of a viscoelastic liquid on top of a layered structure with distinct viscoelastic properties. Changes in the characteristics of the propagating acoustic wave caused by biochemical interactions at the sensing area can be detected at the output Inter digital transducer (IDT). The propagation of the anti-plane (AP) wave is discussed in this work in a layered structure of piezo-flexo-electric (PFE) layer bonded with a PFE half-space having a soft reinforced layer at the interface. The free surface of the PFE layer is loaded with viscous liquid. The viscosity of the loaded liquid introduces losses and results in the damping of the wave. For the formulation of the problem with interface energy, the Gurtin–Murdoch approach is used. Using suitable conditions, a dispersion relation for propagating waves is derived in complex form. On separating the dispersion relation in real and non-real parts, the expressions relating the phase and damp velocities with wave number are derived. The obtained theoretical results are portrayed for the numerical data of PFE materials and distinct data of the interface layer. The obtained results are validated with pre-existing literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有界面能量的液体负载压电柔电层状模型中的反面波
爱波(LW)生物传感器的基本设计包括在具有不同粘弹性特性的分层结构上加载粘弹性液体。传感区域的生化相互作用引起的声波传播特性的变化可通过输出数字传感器(IDT)进行检测。本研究讨论的是反平面(AP)波在压电柔性电(PFE)层与 PFE 半空间的分层结构中的传播,PFE 半空间的界面上有一个软增强层。PFE 层的自由表面装有粘性液体。加载液体的粘性会带来损耗,导致波的阻尼。对于界面能量问题的表述,采用了 Gurtin-Murdoch 方法。利用合适的条件,以复数形式导出了传播波的频散关系。在将频散关系分为实部和非实部时,得出了相位和阻尼速度与波数的关系表达式。所获得的理论结果描绘了 PFE 材料的数值数据和界面层的独特数据。所得结果与已有文献进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematics and Mechanics of Solids
Mathematics and Mechanics of Solids 工程技术-材料科学:综合
CiteScore
4.80
自引率
19.20%
发文量
159
审稿时长
1 months
期刊介绍: Mathematics and Mechanics of Solids is an international peer-reviewed journal that publishes the highest quality original innovative research in solid mechanics and materials science. The central aim of MMS is to publish original, well-written and self-contained research that elucidates the mechanical behaviour of solids with particular emphasis on mathematical principles. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Plane-stress analysis of a holed membrane at finite equibiaxial stretch Comment on “Explicit solutions in Cartesian coordinates for an elliptic hole in an infinite elastic plate” by M. Oore and S. Oore Sensitivity analysis of an inflated and extended fiber-reinforced membrane with different natural configurations of its constituents Finite-strain Poynting–Thomson model: Existence and linearization Reflection of plane waves from the free surface of a hard sphere-filled elastic metacomposite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1