Structure, Martensitic Transformations, and Mechanical Properties of Aging Nanocrystalline Ti–50.9 at % Ni Alloy

IF 1.8 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Physical Mesomechanics Pub Date : 2024-04-16 DOI:10.1134/S1029959924020048
T. M. Poletika, S. L. Girsova, S. M. Bitter, A. I. Lotkov, K. A. Zheronkina
{"title":"Structure, Martensitic Transformations, and Mechanical Properties of Aging Nanocrystalline Ti–50.9 at % Ni Alloy","authors":"T. M. Poletika,&nbsp;S. L. Girsova,&nbsp;S. M. Bitter,&nbsp;A. I. Lotkov,&nbsp;K. A. Zheronkina","doi":"10.1134/S1029959924020048","DOIUrl":null,"url":null,"abstract":"<p>The effect of aging temperature in the range of 300–500°C on the structure, R martensitic transformations and mechanical characteristics of nanocrystalline Ti–50.9 at % Ni alloy with a grain/subgrain structure was studied. It was found that variation in the spatial distribution of coherent Ti<sub>3</sub>Ni<sub>4</sub> particles in the nanostructure from location on dislocations during low-temperature aging to precipitation at dislocation boundaries under accelerated aging is accompanied by a change in the morphology of the R phase from a nanodomain to a self-accommodating lamellar structure. The nanodomain structure of the R phase contributes to homogeneous deformation of the alloy during loading/unloading and stabilization of superelasticity. When loading the alloy with a lamellar R-phase morphology, localized deformation bands are formed by the R-phase reorientation in a Lüders deformation manner.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"27 2","pages":"152 - 162"},"PeriodicalIF":1.8000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959924020048","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

The effect of aging temperature in the range of 300–500°C on the structure, R martensitic transformations and mechanical characteristics of nanocrystalline Ti–50.9 at % Ni alloy with a grain/subgrain structure was studied. It was found that variation in the spatial distribution of coherent Ti3Ni4 particles in the nanostructure from location on dislocations during low-temperature aging to precipitation at dislocation boundaries under accelerated aging is accompanied by a change in the morphology of the R phase from a nanodomain to a self-accommodating lamellar structure. The nanodomain structure of the R phase contributes to homogeneous deformation of the alloy during loading/unloading and stabilization of superelasticity. When loading the alloy with a lamellar R-phase morphology, localized deformation bands are formed by the R-phase reorientation in a Lüders deformation manner.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
老化纳米晶 Ti-50.9% Ni 合金的结构、马氏体转变和力学性能
摘要 研究了 300-500°C 老化温度对具有晶粒/亚晶粒结构的纳米晶 Ti-50.9%Ni 合金的结构、R 马氏体转变和力学特性的影响。研究发现,纳米结构中相干 Ti3Ni4 颗粒的空间分布从低温时效时位于位错上到加速时效时在位错边界析出的变化,伴随着 R 相形态从纳米域到自容薄片结构的变化。R 相的纳米域结构有助于合金在加载/卸载过程中的均匀变形和超弹性的稳定。当对具有片状 R 相形态的合金进行加载时,R 相会以吕德斯变形方式重新定向,从而形成局部变形带。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Mesomechanics
Physical Mesomechanics Materials Science-General Materials Science
CiteScore
3.50
自引率
18.80%
发文量
48
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.
期刊最新文献
Evaluation of the Effective Mechanical Properties of a Particle-Reinforced Polymer Composite with Low-Modulus Inclusions Absorption of Impact and Shear Energy by Crystal Lattices of Mechanically Activated Inorganic Substances: A Review Multiscale Modeling and Computer-Aided Design of Advanced Materials with Hierarchical Structure Microstructural Deformation and Fracture of Reduced Activation Ferritic-Martensitic Steel EK-181 under Different Heat Treatment Conditions Synthesis of Porous Composites Based on Electroexplosive Ti/Al Nanopowder for Bone Implants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1