Effect of Silver Addition on Microstructure, Phase Composition, Microhardness and Surface Oxide Layer Formation of Al0.5CoCrCu0.5FeNi and Al0.5CoCrCuFeNi High-Entropy Alloys

IF 1.8 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Physical Mesomechanics Pub Date : 2024-04-16 DOI:10.1134/S1029959924020073
O. V. Samoilova, S. E. Pratskova, M. V. Sudarikov, N. A. Shaburova, I. I. Suleymanova, E. A. Trofimov
{"title":"Effect of Silver Addition on Microstructure, Phase Composition, Microhardness and Surface Oxide Layer Formation of Al0.5CoCrCu0.5FeNi and Al0.5CoCrCuFeNi High-Entropy Alloys","authors":"O. V. Samoilova,&nbsp;S. E. Pratskova,&nbsp;M. V. Sudarikov,&nbsp;N. A. Shaburova,&nbsp;I. I. Suleymanova,&nbsp;E. A. Trofimov","doi":"10.1134/S1029959924020073","DOIUrl":null,"url":null,"abstract":"<p>High-entropy alloys (HEAs) consisting of five or more components in an equimolar ratio are attracting increasing attention due to a unique combination of various properties. Doping HEAs with small amounts of certain elements (most often rare earth, trace or noble metals) is a promising way to improve the characteristics of such alloys and to control their properties. This paper reports the results on the microstructure, phase composition, and microhardness of as-cast Ag<sub><i>x</i></sub>Al<sub>0.5</sub>CoCrCu<sub><i>y</i></sub>FeNi HEAs (<i>x</i> = 0, 0.1; <i>y</i> = 0.5, 1.0). The effect of silver addition on the oxidation behavior of the studied HEAs at 700°C was determined. The morphology, phase and chemical composition of the resulting oxide film were studied. It was shown that the introduction of silver improves the mechanical characteristics of the alloys, but deteriorates the oxidation resistance due to the formation of copper-silver eutectic in the alloy microstructure, leading to a change in the morphology and phase composition of the formed oxide layer. Along with the solid solution of (Al, Cr)<sub>2</sub>O<sub>3</sub> oxides and CuCr<sub>2</sub>O<sub>4</sub>, NiCr<sub>2</sub>O<sub>4</sub> spinels, the addition of silver leads to the formation of copper oxide CuO and a small amount of silver oxide Ag<sub>2</sub>O in the surface film.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"27 2","pages":"183 - 196"},"PeriodicalIF":1.8000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959924020073","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

High-entropy alloys (HEAs) consisting of five or more components in an equimolar ratio are attracting increasing attention due to a unique combination of various properties. Doping HEAs with small amounts of certain elements (most often rare earth, trace or noble metals) is a promising way to improve the characteristics of such alloys and to control their properties. This paper reports the results on the microstructure, phase composition, and microhardness of as-cast AgxAl0.5CoCrCuyFeNi HEAs (x = 0, 0.1; y = 0.5, 1.0). The effect of silver addition on the oxidation behavior of the studied HEAs at 700°C was determined. The morphology, phase and chemical composition of the resulting oxide film were studied. It was shown that the introduction of silver improves the mechanical characteristics of the alloys, but deteriorates the oxidation resistance due to the formation of copper-silver eutectic in the alloy microstructure, leading to a change in the morphology and phase composition of the formed oxide layer. Along with the solid solution of (Al, Cr)2O3 oxides and CuCr2O4, NiCr2O4 spinels, the addition of silver leads to the formation of copper oxide CuO and a small amount of silver oxide Ag2O in the surface film.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
添加银对 Al0.5CoCrCu0.5FeNi 和 Al0.5CoCrCuFeNi 高熵合金的显微结构、相组成、显微硬度和表面氧化层形成的影响
摘要 由五种或更多等摩尔比成分组成的高熵合金(HEAs)因其各种特性的独特组合而日益受到关注。在高熵合金中掺杂少量的某些元素(通常是稀土、微量或贵金属)是改善此类合金特性和控制其性能的一种很有前途的方法。本文报告了铸态 AgxAl0.5CoCrCuyFeNi HEAs(x = 0,0.1;y = 0.5,1.0)的显微结构、相组成和显微硬度的研究结果。测定了银的添加对所研究的 HEA 在 700°C 下氧化行为的影响。研究了所得氧化膜的形态、相和化学成分。结果表明,银的引入改善了合金的机械特性,但由于合金微观结构中铜银共晶的形成,导致形成的氧化层的形态和相组成发生变化,从而降低了抗氧化性。随着(Al、Cr)2O3 氧化物和 CuCr2O4、NiCr2O4 尖晶石的固溶,银的加入导致表面膜中氧化铜 CuO 和少量氧化银 Ag2O 的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Mesomechanics
Physical Mesomechanics Materials Science-General Materials Science
CiteScore
3.50
自引率
18.80%
发文量
48
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.
期刊最新文献
Evaluation of the Effective Mechanical Properties of a Particle-Reinforced Polymer Composite with Low-Modulus Inclusions Absorption of Impact and Shear Energy by Crystal Lattices of Mechanically Activated Inorganic Substances: A Review Multiscale Modeling and Computer-Aided Design of Advanced Materials with Hierarchical Structure Microstructural Deformation and Fracture of Reduced Activation Ferritic-Martensitic Steel EK-181 under Different Heat Treatment Conditions Synthesis of Porous Composites Based on Electroexplosive Ti/Al Nanopowder for Bone Implants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1