{"title":"A Self-Defense Copyright Protection Scheme for NFT Image Art Based on Information Embedding","authors":"Fan Wang, Zhangjie Fu, Xiang Zhang","doi":"10.1145/3652519","DOIUrl":null,"url":null,"abstract":"<p>Non-convertible tokens (NFTs) have become a fundamental part of the metaverse ecosystem due to its uniqueness and immutability. However, existing copyright protection schemes of NFT image art relied on the NFTs itself minted by third-party platforms. A minted NFT image art only tracks and verifies the entire transaction process, but the legitimacy of the source and ownership of its mapped digital image art cannot be determined. The original author or authorized publisher lack an active defense mechanism to prove ownership of the digital image art mapped by the unauthorized NFT. Therefore, we propose a self-defense copyright protection scheme for NFT image art based on information embedding in this paper, called SDCP-IE. The original author or authorized publisher can embed the copyright information into the published digital image art without damaging its visual effect in advance. Different from the existing information embedding works, the proposed SDCP-IE can generally enhance the invisibility of copyright information with different embedding capacity. Furthermore, considering the scenario of copyright information being discovered or even destroyed by unauthorized parties, the designed SDCP-IE can efficiently generate enhanced digital image art to improve the security performance of embedded image, thus resisting the detection of multiple known and unknown detection models simultaneously. The experimental results have also shown that the PSNR values of enhanced embedded image are all over 57db on three datasets BOSSBase, BOWS2 and ALASKA#2. Moreover, compared with existing information embedding works, the enhanced embedded images generated by SDCP-IE reaches the best transferability performance on the advanced CNN-based detection models. When the target detector is the pre-trained SRNet at 0.4bpp, the test error rate of SDCP-IE at 0.4bpp on the evaluated detection model YeNet reaches 53.38%, which is 4.92%, 28.62% and 7.05% higher than that of the UTGAN, SPS-ENH and Xie-Model, respectively.</p>","PeriodicalId":50937,"journal":{"name":"ACM Transactions on Multimedia Computing Communications and Applications","volume":"82 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Multimedia Computing Communications and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3652519","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Non-convertible tokens (NFTs) have become a fundamental part of the metaverse ecosystem due to its uniqueness and immutability. However, existing copyright protection schemes of NFT image art relied on the NFTs itself minted by third-party platforms. A minted NFT image art only tracks and verifies the entire transaction process, but the legitimacy of the source and ownership of its mapped digital image art cannot be determined. The original author or authorized publisher lack an active defense mechanism to prove ownership of the digital image art mapped by the unauthorized NFT. Therefore, we propose a self-defense copyright protection scheme for NFT image art based on information embedding in this paper, called SDCP-IE. The original author or authorized publisher can embed the copyright information into the published digital image art without damaging its visual effect in advance. Different from the existing information embedding works, the proposed SDCP-IE can generally enhance the invisibility of copyright information with different embedding capacity. Furthermore, considering the scenario of copyright information being discovered or even destroyed by unauthorized parties, the designed SDCP-IE can efficiently generate enhanced digital image art to improve the security performance of embedded image, thus resisting the detection of multiple known and unknown detection models simultaneously. The experimental results have also shown that the PSNR values of enhanced embedded image are all over 57db on three datasets BOSSBase, BOWS2 and ALASKA#2. Moreover, compared with existing information embedding works, the enhanced embedded images generated by SDCP-IE reaches the best transferability performance on the advanced CNN-based detection models. When the target detector is the pre-trained SRNet at 0.4bpp, the test error rate of SDCP-IE at 0.4bpp on the evaluated detection model YeNet reaches 53.38%, which is 4.92%, 28.62% and 7.05% higher than that of the UTGAN, SPS-ENH and Xie-Model, respectively.
期刊介绍:
The ACM Transactions on Multimedia Computing, Communications, and Applications is the flagship publication of the ACM Special Interest Group in Multimedia (SIGMM). It is soliciting paper submissions on all aspects of multimedia. Papers on single media (for instance, audio, video, animation) and their processing are also welcome.
TOMM is a peer-reviewed, archival journal, available in both print form and digital form. The Journal is published quarterly; with roughly 7 23-page articles in each issue. In addition, all Special Issues are published online-only to ensure a timely publication. The transactions consists primarily of research papers. This is an archival journal and it is intended that the papers will have lasting importance and value over time. In general, papers whose primary focus is on particular multimedia products or the current state of the industry will not be included.