Analysis and Mitigation of Shared Resource Contention on Heterogeneous Multicore: An Industrial Case Study

IF 3.6 2区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Computers Pub Date : 2024-04-08 DOI:10.1109/TC.2024.3386059
Michael Bechtel;Heechul Yun
{"title":"Analysis and Mitigation of Shared Resource Contention on Heterogeneous Multicore: An Industrial Case Study","authors":"Michael Bechtel;Heechul Yun","doi":"10.1109/TC.2024.3386059","DOIUrl":null,"url":null,"abstract":"In this paper, we present a solution to the industrial challenge put forth by ARM in 2022. We systematically analyze the effect of shared resource contention to an augmented reality head-up display (AR-HUD) case-study application of the industrial challenge on a heterogeneous multicore platform, NVIDIA Jetson Nano. We configure the AR-HUD application such that it can process incoming image frames in real-time at 20Hz on the platform. We use Microarchitectural Denial-of-Service (DoS) attacks as aggressor workloads of the challenge and show that they can dramatically impact the latency and accuracy of the AR-HUD application. This results in significant deviations of the estimated trajectories from known ground truths, despite our best effort to mitigate their influence by using cache partitioning and real-time scheduling of the AR-HUD application. To address the challenge, we propose RT-Gang++, a partitioned real-time gang scheduling framework with last-level cache (LLC) and integrated GPU bandwidth throttling capabilities. By applying RT-Gang++, we are able to achieve desired level of performance of the AR-HUD application even in the presence of fully loaded aggressor tasks.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"73 7","pages":"1753-1766"},"PeriodicalIF":3.6000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10494679/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a solution to the industrial challenge put forth by ARM in 2022. We systematically analyze the effect of shared resource contention to an augmented reality head-up display (AR-HUD) case-study application of the industrial challenge on a heterogeneous multicore platform, NVIDIA Jetson Nano. We configure the AR-HUD application such that it can process incoming image frames in real-time at 20Hz on the platform. We use Microarchitectural Denial-of-Service (DoS) attacks as aggressor workloads of the challenge and show that they can dramatically impact the latency and accuracy of the AR-HUD application. This results in significant deviations of the estimated trajectories from known ground truths, despite our best effort to mitigate their influence by using cache partitioning and real-time scheduling of the AR-HUD application. To address the challenge, we propose RT-Gang++, a partitioned real-time gang scheduling framework with last-level cache (LLC) and integrated GPU bandwidth throttling capabilities. By applying RT-Gang++, we are able to achieve desired level of performance of the AR-HUD application even in the presence of fully loaded aggressor tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
异构多核共享资源争用的分析与缓解:工业案例研究
在本文中,我们针对 ARM 于 2022 年提出的行业挑战提出了解决方案。我们在异构多核平台 NVIDIA Jetson Nano 上系统分析了共享资源争用对增强现实平视显示器(AR-HUD)案例研究应用的影响。我们对 AR-HUD 应用程序进行了配置,使其能够在该平台上以 20Hz 的频率实时处理传入的图像帧。我们使用微架构拒绝服务(DoS)攻击作为挑战的攻击性工作负载,结果表明它们会极大地影响 AR-HUD 应用程序的延迟和准确性。尽管我们通过使用缓存分区和 AR-HUD 应用程序的实时调度尽了最大努力来减轻它们的影响,但这还是导致估计轨迹与已知地面事实出现重大偏差。为了应对这一挑战,我们提出了 RT-Gang++,这是一个具有末级缓存(LLC)和集成 GPU 带宽节流功能的分区实时帮派调度框架。通过应用 RT-Gang++,即使在侵略者任务满载的情况下,我们也能使 AR-HUD 应用程序达到理想的性能水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Computers
IEEE Transactions on Computers 工程技术-工程:电子与电气
CiteScore
6.60
自引率
5.40%
发文量
199
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.
期刊最新文献
CUSPX: Efficient GPU Implementations of Post-Quantum Signature SPHINCS+ Chiplet-Gym: Optimizing Chiplet-based AI Accelerator Design with Reinforcement Learning FLALM: A Flexible Low Area-Latency Montgomery Modular Multiplication on FPGA Novel Lagrange Multipliers-Driven Adaptive Offloading for Vehicular Edge Computing Leveraging GPU in Homomorphic Encryption: Framework Design and Analysis of BFV Variants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1