C. Norris, B. Arnold, J. Wilkes, C. Squibb, A. J. Nelson, H. Schwenker, J. Mesisca, A. Vossenberg, P. J. VandeVord
{"title":"Bilayer surrogate brain response under various blast loading conditions","authors":"C. Norris, B. Arnold, J. Wilkes, C. Squibb, A. J. Nelson, H. Schwenker, J. Mesisca, A. Vossenberg, P. J. VandeVord","doi":"10.1007/s00193-024-01158-5","DOIUrl":null,"url":null,"abstract":"<div><p>Variations in the experimental constraints applied within blast simulations can result in dramatically different measured biomechanical responses. Ultimately, this limits the comparison of data between research groups and leads to further inquisitions about the “correct” biomechanics experienced in blast environments. A novel bilayer surrogate brain was exposed to blast waves generated from advanced blast simulators (ABSs) where detonation source, boundary conditions, and ABS geometry were varied. The surrogate was comprised of Sylgard 527 (1:1) as a gray matter simulant and Sylgard 527 (1:1.2) as a white matter simulant. The intracranial pressure response of this surrogate brain was measured in the frontal region under primary blast loading while suspended in a polyurethane spherical shell with 5 mm thickness and filled with water to represent the cerebrospinal fluid. Outcomes of this work discuss considerations for future experimental designs and aim to address sources of variability confounding interpretation of biomechanical responses.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"34 4","pages":"357 - 367"},"PeriodicalIF":1.7000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00193-024-01158-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00193-024-01158-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Variations in the experimental constraints applied within blast simulations can result in dramatically different measured biomechanical responses. Ultimately, this limits the comparison of data between research groups and leads to further inquisitions about the “correct” biomechanics experienced in blast environments. A novel bilayer surrogate brain was exposed to blast waves generated from advanced blast simulators (ABSs) where detonation source, boundary conditions, and ABS geometry were varied. The surrogate was comprised of Sylgard 527 (1:1) as a gray matter simulant and Sylgard 527 (1:1.2) as a white matter simulant. The intracranial pressure response of this surrogate brain was measured in the frontal region under primary blast loading while suspended in a polyurethane spherical shell with 5 mm thickness and filled with water to represent the cerebrospinal fluid. Outcomes of this work discuss considerations for future experimental designs and aim to address sources of variability confounding interpretation of biomechanical responses.
期刊介绍:
Shock Waves provides a forum for presenting and discussing new results in all fields where shock and detonation phenomena play a role. The journal addresses physicists, engineers and applied mathematicians working on theoretical, experimental or numerical issues, including diagnostics and flow visualization.
The research fields considered include, but are not limited to, aero- and gas dynamics, acoustics, physical chemistry, condensed matter and plasmas, with applications encompassing materials sciences, space sciences, geosciences, life sciences and medicine.
Of particular interest are contributions which provide insights into fundamental aspects of the techniques that are relevant to more than one specific research community.
The journal publishes scholarly research papers, invited review articles and short notes, as well as comments on papers already published in this journal. Occasionally concise meeting reports of interest to the Shock Waves community are published.