A simple, self-sufficient approach for the design of shock tube driver insert

IF 1.7 4区 工程技术 Q3 MECHANICS Shock Waves Pub Date : 2024-04-05 DOI:10.1007/s00193-024-01157-6
Y. Tan, Z. Li, R. Mével
{"title":"A simple, self-sufficient approach for the design of shock tube driver insert","authors":"Y. Tan, Z. Li, R. Mével","doi":"10.1007/s00193-024-01157-6","DOIUrl":null,"url":null,"abstract":"<p>Experimental data obtained in shock tubes, including ignition delay-time and species concentration profiles, are among the most significant parameters in combustion studies. Although shock tubes are widely considered as a quasi-ideal reactor for high-temperature studies, it involves a number of non-ideal effects such as a time-dependent pressure increase within the test section. This non-ideal pressure rise induces inaccuracy in the shock tube measurements. To overcome this issue, the driver insert strategy has proven to be successful. Nevertheless, the approaches presented in the literature to design such a driver insert either are not self-sufficient, i.e., they rely on external software, or lack flexibility. In this study, a simple, self-sufficient, fully analytical approach implemented in a MATLAB code has been developed to design a driver insert for the control of the rate of pressure rise in the test volume. The tip and end positions of the insert, as well as the effect of area change ratio on pressure behind reflected shock are obtained by the code. Extensive validation is performed against previous results from the literature and new data generated with several numerical codes.</p>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00193-024-01157-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Experimental data obtained in shock tubes, including ignition delay-time and species concentration profiles, are among the most significant parameters in combustion studies. Although shock tubes are widely considered as a quasi-ideal reactor for high-temperature studies, it involves a number of non-ideal effects such as a time-dependent pressure increase within the test section. This non-ideal pressure rise induces inaccuracy in the shock tube measurements. To overcome this issue, the driver insert strategy has proven to be successful. Nevertheless, the approaches presented in the literature to design such a driver insert either are not self-sufficient, i.e., they rely on external software, or lack flexibility. In this study, a simple, self-sufficient, fully analytical approach implemented in a MATLAB code has been developed to design a driver insert for the control of the rate of pressure rise in the test volume. The tip and end positions of the insert, as well as the effect of area change ratio on pressure behind reflected shock are obtained by the code. Extensive validation is performed against previous results from the literature and new data generated with several numerical codes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计冲击管驱动器插件的简单、自给自足的方法
在冲击管中获得的实验数据,包括点火延迟时间和物种浓度曲线,是燃烧研究中最重要的参数之一。尽管人们普遍认为冲击管是一种用于高温研究的准理想反应器,但它也会产生一些非理想效应,例如试验段内随时间变化的压力上升。这种非理想的压力上升会导致冲击管测量的不准确性。为了克服这一问题,插入驱动器的策略被证明是成功的。然而,文献中介绍的设计这种驱动器插件的方法要么不能自给自足,即依赖外部软件,要么缺乏灵活性。本研究开发了一种简单、自给自足、完全分析的方法,并在 MATLAB 代码中实现,用于设计控制测试体积内压力上升率的驱动插件。该代码得出了插入件的顶端和末端位置,以及面积变化率对反射冲击后压力的影响。根据以前的文献结果和使用若干数值代码生成的新数据进行了广泛的验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Shock Waves
Shock Waves 物理-力学
CiteScore
4.10
自引率
9.10%
发文量
41
审稿时长
17.4 months
期刊介绍: Shock Waves provides a forum for presenting and discussing new results in all fields where shock and detonation phenomena play a role. The journal addresses physicists, engineers and applied mathematicians working on theoretical, experimental or numerical issues, including diagnostics and flow visualization. The research fields considered include, but are not limited to, aero- and gas dynamics, acoustics, physical chemistry, condensed matter and plasmas, with applications encompassing materials sciences, space sciences, geosciences, life sciences and medicine. Of particular interest are contributions which provide insights into fundamental aspects of the techniques that are relevant to more than one specific research community. The journal publishes scholarly research papers, invited review articles and short notes, as well as comments on papers already published in this journal. Occasionally concise meeting reports of interest to the Shock Waves community are published.
期刊最新文献
Asymmetry of imploding detonations in thin channels Optical measurement of state variables associated with blast wave evolution Influence of fuel inhomogeneity on detonation wave propagation in a rotating detonation combustor A review of current safe distance calculations and the risk of mild traumatic brain injury Microwave radar diagnostics of piston motion in a free-piston-driven expansion tube
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1