Carboxymethylated Rhizoma alismatis polysaccharides reduces the risk of calcium oxalate stone formation by reducing cellular inflammation and oxidative stress
{"title":"Carboxymethylated Rhizoma alismatis polysaccharides reduces the risk of calcium oxalate stone formation by reducing cellular inflammation and oxidative stress","authors":"Zhi Wang, Li Liu, Chuang-Ye Li, Yao-Wang Zhao, Xin-Yi Tong, Xiao-Yan Cheng, Jian-Ming Ouyang","doi":"10.1007/s00240-024-01565-4","DOIUrl":null,"url":null,"abstract":"<p>This study aims to elucidate the mechanism and potential of <i>Rhizoma alismatis</i> polysaccharides (RAPs) in preventing oxidative damage to human renal proximal tubule epithelial cells. The experimental approach involved incubating HK-2 cells with 100 nm calcium oxalate monohydrate for 24 h to establish a cellular injury model. Protection was provided by RAPs with varying carboxyl group contents: 3.57%, 7.79%, 10.84%, and 15.33%. The safeguarding effect of RAPs was evaluated by analyzing relevant cellular biochemical indicators. Findings demonstrate that RAPs exhibit notable antioxidative properties. They effectively diminish the release of reactive oxygen species, lactate dehydrogenase, and malondialdehyde, a lipid oxidation byproduct. Moreover, RAPs enhance superoxide dismutase activity and mitochondrial membrane potential while attenuating the permeability of the mitochondrial permeability transition pore. Additionally, RAPs significantly reduce levels of inflammatory factors, including NLRP3, TNF-α, IL-6, and NO. This reduction corresponds to the inhibition of overproduced pro-inflammatory mediator nitric oxide and the caspase 3 enzyme, leading to a reduction in cellular apoptosis. RAPs also display the ability to suppress the expression of the HK-2 cell surface adhesion molecule CD44. The observed results collectively underscore the substantial anti-inflammatory and anti-apoptotic potential of all four RAPs. Moreover, their capacity to modulate the expression of cell surface adhesion molecules highlights their potential in inhibiting the formation of kidney stones. Notably, RAP3, boasting the highest carboxyl group content, emerges as the most potent agent in this regard.</p>","PeriodicalId":23411,"journal":{"name":"Urolithiasis","volume":"37 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urolithiasis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00240-024-01565-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to elucidate the mechanism and potential of Rhizoma alismatis polysaccharides (RAPs) in preventing oxidative damage to human renal proximal tubule epithelial cells. The experimental approach involved incubating HK-2 cells with 100 nm calcium oxalate monohydrate for 24 h to establish a cellular injury model. Protection was provided by RAPs with varying carboxyl group contents: 3.57%, 7.79%, 10.84%, and 15.33%. The safeguarding effect of RAPs was evaluated by analyzing relevant cellular biochemical indicators. Findings demonstrate that RAPs exhibit notable antioxidative properties. They effectively diminish the release of reactive oxygen species, lactate dehydrogenase, and malondialdehyde, a lipid oxidation byproduct. Moreover, RAPs enhance superoxide dismutase activity and mitochondrial membrane potential while attenuating the permeability of the mitochondrial permeability transition pore. Additionally, RAPs significantly reduce levels of inflammatory factors, including NLRP3, TNF-α, IL-6, and NO. This reduction corresponds to the inhibition of overproduced pro-inflammatory mediator nitric oxide and the caspase 3 enzyme, leading to a reduction in cellular apoptosis. RAPs also display the ability to suppress the expression of the HK-2 cell surface adhesion molecule CD44. The observed results collectively underscore the substantial anti-inflammatory and anti-apoptotic potential of all four RAPs. Moreover, their capacity to modulate the expression of cell surface adhesion molecules highlights their potential in inhibiting the formation of kidney stones. Notably, RAP3, boasting the highest carboxyl group content, emerges as the most potent agent in this regard.
期刊介绍:
Official Journal of the International Urolithiasis Society
The journal aims to publish original articles in the fields of clinical and experimental investigation only within the sphere of urolithiasis and its related areas of research. The journal covers all aspects of urolithiasis research including the diagnosis, epidemiology, pathogenesis, genetics, clinical biochemistry, open and non-invasive surgical intervention, nephrological investigation, chemistry and prophylaxis of the disorder. The Editor welcomes contributions on topics of interest to urologists, nephrologists, radiologists, clinical biochemists, epidemiologists, nutritionists, basic scientists and nurses working in that field.
Contributions may be submitted as full-length articles or as rapid communications in the form of Letters to the Editor. Articles should be original and should contain important new findings from carefully conducted studies designed to produce statistically significant data. Please note that we no longer publish articles classified as Case Reports. Editorials and review articles may be published by invitation from the Editorial Board. All submissions are peer-reviewed. Through an electronic system for the submission and review of manuscripts, the Editor and Associate Editors aim to make publication accessible as quickly as possible to a large number of readers throughout the world.